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Many cells face search problems, such as finding food, mates, or shelter, where their
success depends on their search strategy. In contrast to other unicellular organisms,
the slime mold Physarum polycephalum forms a giant network-shaped plasmodium
while foraging for food. What is the advantage of the giant cell on the verge of
multicellularity? We experimentally study and quantify the migration behavior of
P. polycephalum plasmodia on the time scale of days in the absence and presence of food.
We develop a model which successfully describes its migration in terms of ten data-
derived parameters. Using the mechanistic insights provided by our data-driven model,
we find that regardless of the absence or presence of food, P. polycephalum achieves
superdiffusive migration by performing a self-avoiding run-and-tumble movement. In
the presence of food, the run duration statistics change, only controlling the short-
term migration dynamics. However, varying organism size, we find that the long-term
superdiffusion arises from self-avoidance determined by cell size, highlighting the
potential evolutionary advantage that this macroscopically large cell may have.

plasmodial slime mold | multicellularity | behavior | migration

Search problems are a widespread challenge for living organisms, from unicellular species
to animals (1–5). Success in finding food, mates, or shelter depends on the search
strategy (6–10). The search of unicellulars is commonly characterized by Brownian
motion on long time scales (1, 2, 11, 12), whereas more evolved life forms such as
mammalian cells, insects, birds, or humans show superdiffusion (5, 13–19). Strikingly,
unicellulars in groups, like swarming bacteria (20), and unicellular organisms on the
verge of multicellularity, like large multinucleate cells (21, 22), also show superdiffusion.
Since search success is coupled to survival chances (9), the need to find effective strategies
could be a driver of evolution. With the increase in cell size being the putative first
evolutionary step in the critical transition from unicellular to multicellular life (23), what
are the benefits of a large cell size in the context of search problems?

The mean squared displacement (MSD) measures the deviation of an organism from
a reference position during its migration, quantifying how much space is explored. The
MSD is typically characterized by a power law MSD(t) ∝ Dt� with generalized diffusion
constant D, time t and exponent � (24). Scale-invariant migration trajectories allow for
a constant exponent to classify the MSD, bounded by � = 1 for Brownian motion
and � = 2 for ballistic motion, where values between 1 and 2 refer to superdiffusion, as
arising in Lévy walks and self-avoiding walks. For Lévy walks, the exponent is determined
by the power law describing the step length distribution (25); for a self-avoiding walk
in two dimensions, the exponent is generally accepted to be close to � = 1.5 (26, 27).
Depending on the search task, different migration strategies lead to different success,
with Brownian motion being best when search targets are close (8), but superdiffusion
outperforming it when target density is low (9). Ballistic motion is predicted to be
optimal for Poisson-distributed targets but is less efficient than a run-and-tumble walk
when the goal is to find a fixed target within a confinement (10). Unicellulars already have
mixed search strategies, performing ballistic motion on short time scales and Brownian
motion on long time scales. Prominent examples include run-and-tumble motion and
persistent random walks (1, 2, 11, 12, 28), which are characterized by a transition from
ballistic motion on short time scales to Brownian motion on long time scales (6, 11, 29).
Superdiffusion on long time scales arises, for example, from long-range correlations
as found for higher life forms (6, 13), but also in crowded bacterial swarms (20) or
in the giant cells of Physarum polycephalum (21, 22). Yet, how the giant unicellular
P. polycephalum generates superdiffusive motion is unclear despite its fascinating life
form on the verge of multicellularity (23).

P. polycephalum is a plasmodial slime mold — a unicellular, non-dividing, multinu-
cleate organism, devoid of the complexity of multicellular model systems. Despite the
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absence of a nervous system,P. polycephalum coordinates complex
behaviors including adaptive network formation (30), speed-
accuracy trade-offs during foraging (31), and nutritional deci-
sions (32), which has earned it a reputation for being “smart” (33).
It can also escape traps by leaving a trail of slime, which it uses as
an external memory to actively avoid areas it has already visited
(34–36). Its cell size is highly variable, covering a range of orders
of magnitude from 100 μm to meters (33), and correlates with
the average speed of locomotion, which is oscillating periodically
(37). P. polycephalum has proven to be highly amenable to
both observation and quantification of its dynamics, as well as
theoretical modeling, making it an ideal model system to, here,
develop mechanistic insight into its superdiffusive motion.

In this work, we experimentally observe P. polycephalum
plasmodia migrating in a neutral environment, perform data
analysis to determine their migration characteristics, and develop
a data-driven model which captures P. polycephalum’s migration
behavior. We show the robustness of our model by quantifying
how the behavior changes in a nutritious migration environment.
Varying organism size, we reveal the pivotal role of cell size in
driving superdiffusive motion by enabling reliable self-avoidance
only above a cell size of 0.65 mm2. Our results highlight the
adaptive capabilities of P. polycephalum, as well as the impact
of cell size on space exploration performance, suggesting the
potential evolutionary advantage that this large unicellular may
have.

Results
Migration Shows Superdiffusive MSD and Anomalous Persis-
tence. We experimentally follow and quantify the migration
of P. polycephalum plasmodia of different size and on differ-
ent migration substrates. In the initial setup, plasmodia are
allowed to migrate on a two-dimensional, nonnutritious substrate

(1.5% agar). Using bright-field microscopy in combination with
a stage-top incubator, we follow the movement of plasmodia
over a period of up to 134 h (5.6 d) while ensuring constant
and homogeneous environmental conditions, namely humidity,
light, and temperature. We perform cell tracking and statisti-
cally analyze the centroid trajectories of individual plasmodia
(Fig. 1).

To quantify the space exploration behavior of P. polycephalum,
we use two established measures: the time-averaged MSD,

MSD(t) = 〈[r(� + t)− r(�)]2〉� ,

and the orientational correlation, C,

C(t) = 〈cos �〉 = 〈r(� + t) · r(�)/r(�)2
〉� ,

where r(�) is the position of the plasmodium’s centroid at time �,
and t is the time interval of the MSD measurement. How does the
MSD of migrating P. polycephalum scale with t? Our statistical
analysis, based on 14 experimental trajectories, shows that the
MSD of plasmodia migrating on plain agar is superdiffusive over
a large range of time scales (Fig. 1B). However, we find that
the MSD exponent � is not constant, but depends on the time
scale t. Defining the instantaneous MSD exponent �(t) as the
logarithmic derivative of the MSD

�(t) =
∂ log MSD(t)

∂ log t
,

we find that �(t) is decreasing toward longer time scales (Fig. 1
B, Inset): At the smallest time scale (4 min), � is close to a
value of 2, signifying almost ballistic motion. At larger times,
� is slowly decaying, approaching a seemingly stable value of
� ≈ 1.5 at the order of 10 h, which is compatible with a

A B

C

2 mm

Fig. 1. Migration of P. polycephalum shows superdiffusion and anomalous persistence. (A) Plasmodia of P. polycephalum on a petri dish with 1.5% agar
(background subtracted image) with overlayed trajectories (one dot every 8 min, 40 h in total). (B) Log–log plot of the superdiffusive MSD of migrating
plasmodia. The blue line and shaded region represent the ensemble average over the time-averaged MSDs of 14 individual trajectories and the standard
deviation, respectively. The black dashed line and shaded region show corresponding simulation results. The black dotted line shows results from simulations
without the self-avoidance, so a pure run-and-tumble. Dash-dotted lines show the MSDs of ballistic (∝ t2) and diffusive motion (∝ t1). Inset: Instantaneous MSD
exponent �(t). The migration is superdiffusive (� > 1) over ≈3 orders of magnitude in time. Red tick: Flory exponent for a self-avoiding walk in two dimensions.
(C) Log–log plot of the orientational correlation C(t) as a measure of persistence. The red dotted lines show power laws for comparison.
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self-avoiding walk. In addition to the MSD, the orientational
correlation describes how well the direction of migration is
aligned with respect to the direction at previous time points,
thus quantifying the persistence of the migration. In the case of
P. polycephalum, we observe that orientational correlations show
a decay slower than exponential (Fig. 1C ), which contrasts with
the exponential decay for persistent random walks (28, 38). Thus,
P. polycephalum’s migration shows anomalous persistence. Taken
together, both experimentally observed MSD and orientational
correlation cannot be explained by the standard random walk
models discussed in the introduction. To understand how
superdiffusivity and anomalous persistence emerge, we next
quantify the migration characteristics.

The trajectories of P. polycephalum are reminiscent of a run-
and-tumble motion (39) with phases of straight movement
and phases of stationarity, after which plasmodia change their
direction (Fig. 1A). The stretches of straight movement are
consistent with an MSD exponent close to � = 2 on small time
scales, associated with ballistic migration. Another important
characteristic of P. polycephalum’s migration is that plasmodia
usually do not cross their own path. This behavior is a result
of their path-marking mechanism: Migrating plasmodia leave
behind a slime trail which they generally avoid when encountered
(34–36). Although previously considered irrelevant in the case
of very small, tadpole-shaped plasmodia (21), this avoidance
could explain P. polycephalum’s superdiffusive behavior since
self-avoiding walks are associated with a superdiffusive MSD
exponent (26, 27). Taken together, these observations suggest
that the migration of P. polycephalum could be described by
a combination of two types of random walks, i.e., as a self-
avoiding run-and-tumble walk. To investigate this hypothesis,
we next quantify the statistics of the migration behavior.

Quantifying Run-and-Tumble and Self-Avoiding Behavior.
Closely inspecting our experimental trajectories, we distinguish
P. polycephalum’s phases of fast, straight movement and phases
of stationarity with small positional oscillations, similar to run-
and-tumble (1) or intermittent behavior (40). We discriminate

the two phases, i.e., run and tumble, by measuring the local
directionality, or straightness, of the movement. This quantity is
defined as the ratio of the distance between two positions and the
length of the plasmodium’s path connecting these two positions
(41). Sections of the trajectory with a directionality greater
than a threshold (0.9, Materials and Methods) are identified as
phases of running. Phases of arrested movement (tumbling) are
characterized by a lower directionality. This method allows us to
divide the trajectories into a series of two alternating phases (SI
Appendix, Fig. S1), which we analyze separately. We describe
a single phase of running or tumbling as a series of steps,
characterized by three parameters: phase duration, speeds, and
turning angles. We find that the distributions of running and
tumbling durations are best fitted by combinations of two power
laws (Fig. 2B and SI Appendix Fig. S2A), according to the Akaike
information criterion (SI Appendix,Text). Speed distributions are
well described by gamma distributions (Fig. 2C ). The turning-
angle distribution during runs is well fitted by an exponential
and the one during tumbles is close to a uniform distribution
(Fig. 2D).

In accordance with the literature, we observe that plasmodia
generally avoid previously visited areas marked by their slime trail
(34–36). The shape and extent of the slime trail is determined by
the cell shape of the migrating plasmodia, which is highly variable
in time. We describe the shape of the just forming slime trail by
an ellipse fitted to the plasmodium (Fig. 2A), and approximate
the trail width as the median width of the fitted ellipse (Fig. 2E).
In our experimental observations, the distance from which the
plasmodia detect the slime trail is often greater than zero (see
Fig. 2A, red arrows), probably due to diffusion of the unknown
repellent slime component in the agar. Reid et al. found that
slime from a large culture of slime mold induced an avoidance
response in very large plasmodia (1 cm2 cell area) for up to 6 d
(35), which is much longer than the time frame considered in
our analysis.

Following the quantification of migration trajectories in terms
of distributions, we extract from our data that plasmodia perform
a self-avoiding run-and-tumble movement governed by the

18:40 h16:00 h02:40 h 05:20 h 08:00 h 10:40 h 13:20 h00:00 h

A

Tumble
RunAvoidance

Avoidance

B Running/tumbling duration Speed Turning angleC D E Self-avoidance size

Fig. 2. P. polycephalum performs a self-avoiding run-tumble movement during its migration. (A) Exemplary trajectory of a plasmodium with highlighted events
of tumbling (green arrow), running (blue arrow) and self-avoidance (red arrows). The cumulative visited area is visualized in light gray. Overlayed ellipses are
fitted to the plasmodium as an approximation for its size. (Scale bar, 2 mm.) (B)–(E) Parameter extraction from data for the model: Complementary cumulative
distribution functions (CCDF), P(X > x), of the analyzed variables, with X denoting the respective variable. Fits from maximum likelihood estimation in solid lines.
(B) Run and tumble durations fitted with a combination of two power laws. (C) Speeds during runs and tumbles with fitted gamma distributions. Run statistics:
a = 2.60, b = 0.12 min−1. Tumble statistics: a = 1.69, b = 0.18 min−1. Dashed lines: Root mean squared speeds. (D) Turning angles between consecutive steps
during runs and tumbles. Run statistics fitted by an exponential distribution and tumble statistics approximated by a homogeneous distribution. (E) Widths of
the plasmodia slime trails as a measure for the avoided space around the trajectories. The width is estimated as the width of an ellipse fitted to the plasmodium
as in (A). The dashed line shows the median width of all plasmodia.
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following rules: A migrating plasmodium alternates between
two phases of movement, running, and tumbling. Running and
tumbling durations are distributed according to a combination
of two power laws. In each phase, the plasmodium moves with
a speed characteristic for this phase, distributed according to
gamma distributions. After each step, it chooses the direction
of the next step according to an exponential distribution for
runs and according to a uniform distribution for tumbles. As it
explores its environment, the plasmodium does not come closer
to its past trajectory than the median width of a plasmodium.

Model Reveals Individual Contributions of Parameters. We
now use the data-derived rules and statistics to model
P. polycephalum’s migration behavior as the combination of
run-and-tumble and self-avoidance, with the aim of reproducing
P. polycephalum’s movement in terms of the experimentally
observed MSD and orientational correlation. We simplify the
model by assigning constant speeds during runs and tumbles,
rather than sampling from the gamma distributions. With this,
the number of parameters in our model reduces to ten: the
exponents �R,T and �R,T, and the transition points bR,T of
the combined power law distributions of running and tumbling
durations, the average speeds during runs and tumbles vR,T
corresponding to the root mean squared speeds

√
〈v2〉R,T, the

average turning angle during runs �R and the median width
of the plasmodia w̄, which we all extract directly from the data
without the need for model fitting. This is done by estimating
all parameters by fitting the distributions to the data (Fig. 2
B–E). Now using the ten data-derived parameters, we simulate
self-avoiding trajectories as a series of runs and tumbles, which
themselves consist of series of random steps characterized by
a direction and by a step length, according to the described
distributions. In this sense, our simulation is a kinetic process
as the trajectories are built step by step in time, which differs
from the classical definition of self-avoiding walks in the context
of equilibrium polymers. However, the kinetic definition is
believed to be in the same universality class as the classical
self-avoiding walk and to have the same critical exponents
(42). We quantify the MSD and the orientational correlation
of the simulated trajectories and find that they reproduce the
experimental results with excellent accuracy (Fig. 1 B and C ),
confirming that our model captures the migration behavior of
P. polycephalum plasmodia. With the model at hand, we can
vary the parameters to understand their individual contributions
to the space exploration behavior (see SI Appendix, Fig. S3
for parameter sweeps). The MSD is fully characterized by the
generalized diffusion constant D and the time-dependent MSD
exponent �(t). We find that D depends on the speeds vR,T
but also on the average running and tumbling durations 〈R〉 and

〈T 〉, which are determined by �R,T, �R,T, and bR,T (SI Appendix,
Text). This dependence of D can also be seen analytically: We
find D ∝ 〈R〉〈v2

R〉 + 〈T 〉〈v2
T〉 (SI Appendix, Text). For the

MSD exponent �(t), we find that the parameters act at different
time scales. The MSD exponent at short time scales (≲1 h) is
determined by 〈R〉 and 〈T 〉 and the average turning angle during
runs �R , with � correlating positively with 〈R〉 and negatively
with 〈T 〉 and�R (SI Appendix, Fig. S3A–C ). The MSD exponent
at intermediate time scales (1 h − 10 h) is determined by �R
and the width w̄ of the plasmodia, with � correlating again
negatively with �R and positively with w̄ (SI Appendix, Fig. S3
C and D). The MSD exponent at long time scales (≳10 h) is
only determined by w̄, which controls how fast � is converging
eventually to the expected value of 1.5 for very long time scales (SI
Appendix, Figs. S3 and S4). Table 1 summarizes these results. The
intuition behind the findings is that the straighter the movement,
the higher the MSD exponent. This is the case for longer runs and
a smaller average turning angle, but also for a larger plasmodium
width; the width w̄ determines the self-avoidance range, with
a larger width inducing more avoidance, resulting in straighter
movement. The influence of the parameters on the orientational
correlation is similar to the one on the MSD exponent.

Apart from the success of the model and the mechanistic
insight it provides, it is not clear how robustly it describes any
P. polycephalum plasmodium irrespective of its environment.
Also, which migration parameters would change in a different
environment?

Model Is Robust against Environmental Changes. To test the
robustness of our model, we let plasmodia migrate on a nutritious
substrate (Materials and Methods). Quantifying the MSD and
orientational correlation of the obtained nine trajectories, we do
not observe significant differences from the migration behavior
on plain agar on the smallest time scales (≲10 min), except for
a larger generalized diffusion constant D. However, on larger
time scales, the exponent of the MSD is higher for migration
on nutritious agar, resulting in a higher MSD (Fig. 3 A and B).
The same is true for the orientational correlation (Fig. 3C ).
Quantification of the run-and-tumble dynamics as described
in the previous section reveals that the running and tumbling
durations are still distributed as power laws (SI Appendix,
Figs. S2B and S5), but that there are very long runs compared to
migration on nonnutritious substrate: The average run duration
〈R〉 increases from 48.2 min to 103.2 min, while the tumble
dynamics do not change significantly, with 〈T 〉 increasing from
17.9 min to 20.6 min (Materials and Methods and SI Appendix,
Fig. S2B). This explains both the larger generalized diffusion
constant D and the higher MSD exponent � on time scales less
than 1 h, according to our analysis of the influence of the average

Table 1. Model parameters related to the migration rules extracted from the data and their control over the MSD
Migration rule extracted from data Model parameters Control over MSD

Run and tumble durations distributed as two power laws Generalized diffusion constant, MSD exponent
at small time scales (≲1 h)– exponent of first power law �R,T

– exponent of second power law �R,T
– transition point between the power laws bR,T
Constant speed during run and tumble vR,T Generalized diffusion constant
Turning angles distributed exponentially during runs �R MSD exponent at short and intermediate time

scales (≲10 h)
Self-avoidance according to plasmodium width w̄ MSD exponent at intermediate and long time

scales (≳1 h)
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A B C

Fig. 3. MSD exponent and orientational correlation of P. polycephalum are higher on a nutritious migration substrate, but are captured by the same type
of model. (A) Log–log plot of the MSD divided by time of migrating plasmodia on non-nutritious substrate (14 trajectories) and on nutritious substrate (nine
trajectories) and the MSD of the simulated trajectories. Shaded regions show the standard deviations. (B) Log–lin plot of the instantaneous MSD exponent � in
experiments and simulations. (C) Log–log plot of the orientational correlation C in experiments and simulations.

run duration 〈R〉 on D and �. The distributions of speeds and
turning angles are also largely unaffected, but the plasmodia are
larger due to growth induced by the nutritious substrate, which
explains the higher MSD exponent � on large time scales. We
extract all model parameters from the nutritious agar dataset
(SI Appendix, Fig. S6) and run additional simulations, again
yielding an excellent match with the data (Fig. 3). This shows
that our model is robust and we set out to investigate as a possible
evolutionary advantage of P. polycephalum the influence of the
plasmodium size on its space exploration behavior.

Self-Avoidance Critically Controlled by Organism Size. We want
to experimentally test the prediction of our model that the
plasmodium size influences the MSD exponent on time scales
larger than 1 h. The size is an intrinsic property of the plasmodia,
which we can simply vary by picking plasmodia of different size.
We divide the 14 trajectories on plain agar into two equal groups
(nine trajectories each), one containing plasmodia with a cell
area smaller than the median cell area (0.65 mm2), and the other
containing larger plasmodia. Quantifying these groups separately,
we find that the orientational correlation is independent of
the organism size at small time scales (≲1 h) (Fig. 4C ). MSD
quantification reveals that large plasmodia have a significantly
larger MSD at short time scales, meaning that they have a larger
generalized diffusion constant D than small plasmodia (Fig. 4A).
The reason for this is that they are faster since migration speed
correlates positively with cell size (37). Most notably, the group
of small plasmodia shows a strong decrease of the MSD exponent
below � = 1.5 at intermediate and long time scales (Fig. 4B),
which is not visible in the group of large plasmodia. So, small

plasmodia have a lower MSD exponent than large plasmodia at
time scales larger than 1 h (SI Appendix, Fig. S7), as predicted
by our model. Quantification of the run-and-tumble dynamics
and cell sizes for both size groups independently shows that
large plasmodia have twice the width of the small plasmodia,
are 29% faster and spend 31% more time in the running phase
(Materials and Methods and SI Appendix Figs. S9–S11). The
other migration characteristics are independent of the size. We
extract all model parameters from the partitioned datasets and
perform additional simulations. Our model captures the MSD
and orientational correlations of the large plasmodia (Fig. 4), but
overestimates those of the small plasmodia for large time scales
(SI Appendix, Fig. S8B). This means that the model is missing
a factor to accurately describe the migration of small plasmodia.
By examining the experimental record, we find the reason
for their stronger decrease in superdiffusivity: Small plasmodia
occasionally cross their own trajectories (four out of seven small
plasmodia cross their own trajectories one to seven times in
around 90 h, see SI Appendix, Figs. S8A and S9A), revisiting
previously visited areas, which makes their space exploration
less efficient. This is also evident from single-cell MSDs. The
individual MSDs of small plasmodia show transient regimes of
diffusive motion with an exponent of � = 1, which is not the
case for large plasmodia (SI Appendix, Figs. S9C and S10C ).
From experimental recordings, we observe that self-crossings in
small plasmodia occur not before 3 h after the deposition of the
slime trail (SI Appendix, Fig. S8A), suggesting a limited response
to the trail. To test this, we run additional simulations in which
plasmodia successively lose responsiveness to parts of the trail that
are more than 3 h in the past, allowing them to revisit regions that

A B C

Fig. 4. MSD exponent and orientational correlation of small plasmodia decrease strongly at time scales t ≳ 1 h. (A) Log–log plot of the MSD divided by time of
migrating plasmodia distinguished by plasmodium size (7 small, 7 large), and the MSD of the simulated trajectories with strict self-avoidance (large plasmodia)
and time-limited self-avoidance of 3 h (small plasmodia). Inset images: Example of a large and a small plasmodium. (Scale bars, 1 mm). Shaded regions show
the standard deviations. (B) Log–lin plot of the instantaneous MSD exponent � in experiments and simulations. (C) Log–log plot of the orientational correlation
C in experiments and simulations.
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they have already visited before the last 3 h. The simulation results
give a good match with the experimental data (Fig. 4) and suggest
an MSD exponent of � = 1 on long time scales (SI Appendix,
Fig. S8B). The parameter describing the response time controls
how fast the MSD exponent is converging toward a value of � = 1
on intermediate to long time scales (SI Appendix, Fig. S8B). We
also ran simulations with a crossing-associated penalty, but this
does not capture the MSD exponent well (SI Appendix, Fig. S8C ).
To directly test whether the response of plasmodia to the trail
is size dependent, we experimentally examine the encounters
of small and large plasmodia with the trails of small and large
conspecifics. We observe that large plasmodia avoid both the
trail of small and large plasmodia, in contrast to small plasmodia
which avoid neither the trail of small nor large plasmodia (SI
Appendix, Figs. S12 and S13). The failure of small plasmodia
to respond to slime trails highlights the importance of size in
enabling superdiffusive migration.

Discussion
We experimentally investigated and quantified the migration
behavior of P. polycephalum plasmodia on plain agar. We found
that their migration is characterized by superdiffusion and
anomalous persistence on long time scales. Our analysis shows
that P. polycephalum performs a self-avoiding run-and-tumble
movement. Our data-driven model successfully captures the
MSD and the orientational correlation and reveals the individual
contributions of the migration parameters. Accounting for a loss
of the responsiveness to the trail by small plasmodia, it teaches
us that the macroscopic unicellular P. polycephalum achieves
superdiffusive migration through size-dependent self-avoidance,
which affects the MSD exponent and the orientational correlation
on intermediate and long time scales.

The self-avoiding behavior is achieved by a path-marking
mechanism in the form of deposited slime, which acts as an
avoidance cue. Path marking as a spatial memory is known not
only from Hansel and Gretel but also from a wide range of
organisms. Examples include bacteria that secrete exopolysac-
charides (43), mammalian cells that deposit extracellular matrix
components (44), or ants that leave pheromone trails (3, 45).
Trail formation is energetically costly, so its benefits should
outweigh its costs to be evolutionarily advantageous (46). Self-
avoiding walks are a beneficial strategy in the sense that they
increase the space exploration significantly (47). Special cases of
self-avoiding walks have been shown to be optimal, for example,
by being more efficient than stochastic trajectories in terms of
minimizing the search time (48), or by generating Lévy walks
(49). P. polycephalum may have developed its path-marking
strategy to gain an advantage in terms of space exploration.

We observe that the type of migration behavior remains the
same in a nutritious environment, underlining the robustness
of our model and suggesting that this is the general mechanism
by which P. polycephalum explores its environment. However,
the migration dynamics adapt to the environment, resulting in
longer run durations and therefore a higher MSD exponent on
a nutritious substrate. The adaptation of the migration to the
nutritional content of the environment is also observed in other
cells, like bacteria (50), dinoflagellates (51), or D. discoideum
(52). D. discoideum is also known to generate gradients in ho-
mogeneous environments through the degradation of nutrients,
promoting long-range chemotaxis (53). It is possible that a similar
mechanism is responsible for the longer run durations we observe
for P. polycephalum, but we leave this for future investigation.

Migration analysis on plain agar with respect to cell size shows
that small plasmodia have a lower MSD exponent than large
plasmodia on long time scales and are therefore less efficient in
terms of space exploration. This is due to small plasmodia crossing
the slime trail. Since small plasmodia, unlike large plasmodia, fail
to respond to slime trails from both small and large specimens,
we suggest that there is a size threshold below which the self-
avoidance mechanism no longer works well, perhaps due to a
reduced ability to process information. This would also explain
the previously observed Brownian motion of very small plasmodia
on long time scales (21).

Our study establishes a link between cell size, long-lasting
path-marking and space exploration efficiency via superdiffusion.
Increasing size has been hypothesized to be the first evolutionary
step in the transition from unicellular to multicellular life (23).
Our findings show that, in the case of P. polycephalum, a larger
size is beneficial because it allows superdiffusive space exploration.
This advantage could have driven P. polycephalum to form larger
and larger cells with many nuclei (54) and thus to evolve into an
organism close to multicellular life.

Materials and Methods
Preparation and Imaging of P. polycephalum. Plasmodial specimen were
prepared from microplasmodia grown in a liquid culture using the medium
by Daniel and Rusch (55) with hematin instead of chicken embryo extract (56).
Culture medium containing microplasmodia was pipetted onto an agar plate,
from which individual microplasmodia with a diameter between 0.5 and 1 mm
were selected with a 1 mL pipette tip and transferred to another 1.5% agar plate,
with a resulting plasmodial area density of <0.01. Nutritious agar contained
10% of the culture medium.

Plasmodia (0.2 to 2 mm2 cell area) were imaged directly after plating under
microscope light for 72 to 168 h, with controlled temperature (24.4 ◦C) and
humidity (close to saturation). The plasmodia were imaged with a Zeiss Axio Zoom
V.16 microscope equipped with a custom-made Pecon stage-top incubation
system, a Hamamatsu ORCA-Flash 4.0 digital camera and a Zeiss PlanApo Z 0.5x
objective, yielding a resolution of 10.83 μm/pixel. A green filter (550/50 nm)
was placed over the transmission light source of the microscope to diminish
P. polycephalum’s response to the continuous illumination with light, since
these wavelengths are known not to induce phototaxis in P. polycephalum (57).
In this way, plasmodia were exposed to a light intensity of only 5.3 μW. Zeiss
Zen 3.2 (blue edition) software was used for imaging. A tiled image composed
of 16 tiles was acquired every 4 min using the Zen Tiles tool, yielding a field of
view of 8.1× 8.1 cm. A total number of eight experiments was conducted, for
examples see Movies S1 and S2.

Image Processing and Analysis. All tiles were converted into 8-bit TIFF files
using Zeiss Zen 3.2 and their backgrounds were removed with a rolling ball algo-
rithm. The MIST stitching algorithm (58, 59) was used to assemble the tiles into a
single image. From the stitched images, we extracted plasmodium pixels using
a custom-written MATLAB (The MathWorks) code, generating binary images via
intensity thresholding. Subsequently, we calculated the center of mass of each
plasmodium in each image to obtain the trajectories. For sufficient statistics,
only trajectories with a length of at least 30 h were considered for the analysis.

All mean squared displacements in the main text are ensemble averages of
the time-averaged squared displacements of individual trajectories. The same
approach was used to calculate the orientational correlations. The instantaneous
MSD exponent � is the logarithmic derivative of the MSD. Its standard deviation
is computed via error propagation (SI Appendix, Text). Data are shown up to the
point where the standard deviation of� exceeds the boundaries given by� = 1
and � = 2.

Tumbling events were identified by calculating the directionality (41) of the
migration as the ratio of the plasmodium’s displacement to the total distance
traveled within a time frame of 20 min. If the directionality was higher than
the threshold value 0.9, the time point was attributed to a running event, else
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Table 2. Model parameter values inferred from
datasets
Data �R,T �R,T bR,T [min] vR,T

[ m
min

]
�R [rad] w̄ [μm]

PA 1.1, 0.2 2.8, 5.3 98, 28 24.5, 12.9 0.24 954
NA 1.1, 0.8 2.2, 4.1 132, 36 24.9, 16.7 0.25 1,811
SP 1.2, 0.03 2.9, 3.6 96, 20 21.6, 11.8 0.25 674
LP 1.0, 0.2 3.1, 4.6 124, 28 27.9, 14.3 0.23 1,340
PA/NA = plain/nutritious agar and SP/LP = small/large plasmodia.

to a tumbling event (SI Appendix, Fig. S1). The model parameters are robust
against deviations of 5% from this threshold (SI Appendix, Fig. S14). Note that, in
principle, tumbles could be caused by encountering a slime trail, which would
affect the distribution of run durations. However, we observe that only 2.4%
of runs longer than 28 min are stopped by an encounter with a slime trail—a
fraction too small to affect the distributions significantly.

The typical width of a plasmodium was estimated by the median length of
the minor axis of the ellipse that has the same second moment of area as the
plasmodium, which was calculated via the built-in MATLAB function regionprops
using the property MinorAxisLength.

Simulations. We simulated trajectories as a series of runs and tumbles, which
themselves consist of series of random steps characterized by a direction and by
a step length. The number of steps during a run or a tumble is determined by
drawing a random number from a combination of two power laws (SI Appendix,
Text) with parameters �R,T, �R,T and bR,T. During tumbles, directions were
determined by drawing a random angle from a uniform distribution between

[−�,�], and speeds were fixed to vT. During runs, directions were determined
by drawing a random angle from an exponential distribution with mean �R,
and speeds were fixed to vR, with the additional rule that a step can only
be made if it does not come closer to the previous trajectory than twice the
mean plasmodium width w̄. This rule enforces self-avoidance. All parameters
used in the simulations were estimated directly from the experimental data
by fitting the distributions described in the main text to the experimental
data (Table 2).

Only simulated trajectories with a minimum length of 1,800 steps,
corresponding to a migration duration of 120 h, were selected to ensure the
true asymptotic behavior (SI Appendix, Text and Fig. S15). All statistics were
averaged over 5,000 simulated trajectories each. Simulations were performed
using Python.

Data, Materials, and Software Availability. Microscopy recordings data have
been deposited in mediaTUM (https://doi.org/10.14459/2024mp1734713)
(60).
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