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A B S T R A C T   

Physarum polycephalum is a foraging, network-forming organism known for its ability to make complex decisions 
and maintain memory of past stimuli without use of a complex nervous system. Self-organized peristaltic flows 
within the network transport nutrients throughout the organism and initiate locomotion and morphological 
changes. A key step in understanding P. polycephalum’s ability to change behavior is therefore forming de-
scriptors of this peristaltic flow. Here, we develop a dynamic network-based method for describing organism- 
wide patterns of tube contractions from videos of P. polycephalum. Our tool provides robust readouts of the 
diversity of global modes of tube contraction that could occur within a given network, based on its geometry and 
topology, and sensitively identifies when global peristaltic patterns emerge and dissipate.   

1. Introduction 

Despite the lack of a central nervous system, and the many di-
vergences from multicellular animals, the plasmodial slime mold P. 
polycephalum is capable of complex decision making, as it explores 
space, locates nutrients, and links them together via a network of tubes. 
P. polycephalum plasmodia grow indeterminately, encounter and 
assimilate food sources, and integrate them into a network that uses 
materials economically while minimizing the energy costs of transport 
(Akita et al. 2016). The adaptive network making of P. polycephalum has 
been studied extensively, leading to insights into its ability to find paths 
through mazes (Nakagaki et al. 2000a; Nakagaki and Guy 2008), solve 
the two-armed bandit problem (Reid et al. 2016), find shortest paths in 
environments with variable costs of growth (Bonifaci et al. 2012), and to 
arrange itself optimally for delivering nutrients (Dussutour et al. 2010; 
Tero et al. 2010). Additionally, the tube diameters within the network, 
both reflect the organism’s current optimization of flows relative to 
nutrient sources, and encode information about its previous encounters 
with food stimuli (Kramar and Alim 2021). Although network 
morphology has attracted ample research attention, the flows within the 

network are relatively less well mapped. An active actomyosin cortex, 
enables tubes to dynamically vary their radii (Kamiya 1981). Rhythmic 
contractions can create flows that span the entire network, transporting 
nutrients and organelles across the organism. Understanding the 
morphology of the network and the protoplasmic flows it creates are 
linked challenges, since the topology and radii of tubes within the 
network both sculpts the protoplasmic flows and continuously adapts to 
them. 

As such, the study of the development of behavior and memory in 
this simple organism is interesting for illuminating the range of behav-
ioral phenotypes that it may be capable of, and for understanding the 
mechanisms that underlie how, despite lacking a neural system or any 
central information processing organ, Physarum has a distributed ca-
pacity to assimilate and respond to information from its environment. In 
particular, studies have highlighted how tubes respond to external 
chemical cues from the organism’s environment (Kramar and Alim 
2021; Fleig et al. 2022), and to internal stimuli, including chemical 
signals transported by internal flows, and to the hydrodynamic stresses 
of the flows themselves (Kamiya et al. 1988; Alim et al. 2017). 

In many filamentous fungi, protoplasmic flows are created by water 
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uptake throughout the mycelium, which is then pushed through a 
network of hyphae to expanding hyphal tips, located at the periphery of 
the mycelium. This mechanism can produce extremely fast flows in the 
fastest growing fungi, including speeds of 50 μm/s, up to 100s of μm/s in 
the fast growing asomycete, Neurospora crassa (Lew 2005). Multidirec-
tional flows are possible, including flows that alternate in time within a 
single tube (Schmieder et al. 2019), or that can occur simultaneously 
within a single hypha, when organelles are trafficked by different motor 
proteins, or by a combination of motor proteins and bulk protoplasmic 
flow (Roper and Seminara 2019). By contrast, in Physarum plasmodial 
networks, active pumping, due to rhythmic tube contraction and dila-
tion, propels protoplasm, and can drive it toward or away from the 
network periphery. Efficient transport on the network-scale may be 
affected by coordinating contraction phases, to create a traveling or 
peristaltic wave, in which contractions smoothly pass from each tube 
through its neighbors. Yet, under many conditions, contractions do not 
coordinate globally, creating small or local protoplasmic flows (Naka-
gaki et al. 2000b; Matsumoto et al. 2008; Alim et al. 2013). 

Two classes of Physarum behaviors are subjects of study and 
modeling, and represent different time scales on which the network 
adapts to new information about its environment: 1. The coordinated 
pumping-driven flow of protoplasm (Ueda et al. 1986; Yoshimoto and 
Kamiya 1984; Kamiya et al. 1988; Ueda et al. 1986) allowing stimulus 
responses on the scale of minutes (Latty and Beekman 2011; Meyer et al. 
2017), including locomotion (Rieu et al. 2015; Lewis et al. 2015; Rodiek 
et al. 2015; Zhang et al. 2017), and nutrient/chemical signal prolifera-
tion (Alim et al. 2017), and 2. The adaptation of network morphology, 
including tube diameters, densities and connectivities on time scales of 
10–30 min (Kramar and Alim 2021). Toward quantitative study of both 
classes of Physarum’s behaviors, we develop a method for measuring the 
ever-changing network morphology, along with a network-informed 
approach to mapping the distribution of contractions and dilations 
across this network. 

Although automated analyses of sequences of microscope images 
allows direct measurement of tube diameters and network morphology, 
and these data can be analyzed to extract summary information such as, 
for the network morphology, the levels of modularity or redundancy 
within the network (Tero et al. 2010), and the phase distributions within 
tubes when they are contracting with the same frequencies (Alim et al. 
2013), the problem of mapping behaviors rapidly becomes enmired in 
issues of data complexity. For example, descriptors of pumping behav-
iors must describe time-varying radii in tens or even thousands of in-
dividual tubes, not even accounting for the additional geometric 
complexity created when parts of the same tube have different phases of 
oscillation. By contrast, when tube oscillations are coordinated across 
the entire network, as occurs when peristaltic waves emerge, a simple 
mapping of the distributions of phases may suffice (Alim et al. 2013), but 
a range of behaviors is possible, from apparent uncoordination to global 
synchronization, and a focus upon phase renders opaque the pumping 
behaviors that occur before the emergence of the peristaltic wave, or 
after its dissipation. Reduced-order descriptors, in which tube oscilla-
tions are projected upon a small number of modes, can allow the 
structure of peristalsis, and the transition between behaviors, to be 
quantified. But a basis of modes needs to be detected. In Fleig et al. 
(2022), a spectrum of peristaltic flow modes was identified using Prin-
cipal Component Analysis (PCA) on sequences of pixel intensities. The 
PCA identified modes could be used to project pumping patterns, and 
synchronization of modes sensitively reports on peristalsis’s first emer-
gence and its subsequent disappearance. PCA is a broadly useful tool for 
identifying bases from data, but it is agnostic to the physics of the net-
work—the geometry and connectivities of tubes—and how these physics 
constrain what types of peristaltic flows the network can create. As such 
it is difficult to interpret how the modes identified by PCA relate to the 
organism’s changing transportation network, or to unpack the 
bi-directional coupling between modes of protoplasmic flow and the 
morphology of the network. 

Here, we identify a mapping based on network-wide flow modeling 
that transforms network measurements to resultant flows, effectively 
identifying the types of coordinated flows the network can support, and 
the patterns of tube oscillations that are needed to create them (called Γ, 
the behavior of which is sketched in Fig. 1). Encoded in this mapping are 
modes that directly identify important peristaltic contraction patterns 
that contribute most to a rapid response to stimuli. As a proof of concept, 
we study three brightfield time series (Movies S1, S3, and S5 from 
Kramar and Alim, 2021) of morphologically diverse organisms over a 
time scale of many peristaltic patterns. We demonstrate that flow modes 
and contraction patterns can be followed during network evolution, and 
can be well represented using our identified bases. In particular, the 
emergence of globally coordinated modes of contraction can be read out 
from the time traces of the data presented via our bases, and the times 
and events that lead to emergence can also be visualized using these 
modes as they were using previous PCA analysis. At the same time, the 
spectrum of modes identified by our method is directly controlled by the 
network geometry. Remarkably, we find that the number of significant 
modes is affected by the size of the network, but only little by the hi-
erarchy of tube radii within the network. The degree of isotropy of our 
measured networks may issue from the relative uniformity of the envi-
ronments in which the networks, studied here, were imaged. Isotropic 
and relatively uniform network morphologies may themselves be 
adaptive under conditions where growth is not biased toward or away 
from sparsely distributed food sources or stressors, allowing the network 
to respond to foods or stresses encountered from any direction. 

2. Methods 

2.1. Mathematical background 

In the following, we develop the mathematics behind idealizing 
flows in a P. polycephalum organism as flows on a mathematical network. 
Here, matrices and vectors are bold-faced with matrices capitalized. All 
other quantities are scalar. 

2.1.1. Flow in an expanding and contracting tube 
The rate of flow of homogeneous, incompressible fluid driven by 

pressure drops through a cylindrical tube is with the Hagen Poiseuille 
Law, so long as the Reynolds number ρuL

μ and the Womersley number 

L
(

ωρ
μ

)1
2 are sufficiently low as previously justified for P. polycephalum 

(see (Watanabe et al. 2011)). In these definitions, ρ and μ are the density 
and dynamic viscosity of the fluid respectively, L is the system length 
scale, u is the scale of the fluid velocity, and ω is the frequency of fluid 
oscillations. ω relates to the frequency of oscillations exhibited by our 
measured volume changes in the following, but a direct measurement of 
it was not performed in the present analysis. The Hagen Poiseuille Law 
states that the amount of flow Q passing through a tube is proportional 
to the pressure gradient Δp across the tube: 

Q=
πa4

8μL
Δp = κΔp (1)  

where a and L are the radius and length of the tube respectively, and μ is 
the dynamic viscosity of the fluid being pushed through the tube. κ = πa4

8 μL 

is known as the Hagen-Poiseuille conductance of the tube. This simple 
flow equation, however, must be modified for Physarum which is driven 
primarily by peristalsis and not by differences in pressure. Given a cy-
lindrical tube with a prescribed, dynamic volume V(t), Stokes’ equations 
can be solved to develop a flow formula for flow that now takes into 
account changes in tube volume (Shapiro et al. 1969; Secomb 1978; Si 
et al. 2011; Alim et al. 2013): 

Q(z)= −
dV
dt

(t)
(z

L

)
+ κΔp (2) 
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where z ∈
[
− L

2,
L
2
]

describes the longitudinal axis, with z = 0 measuring 
the center of the tube. 

2.1.2. Conservation of mass on a network 
We model Physarum as a dynamic network G with nodes VG and 

edges EG. We define 〈i, j〉 ∈ EG to be the edge connecting node i and node 
j, K = (κij) to be a matrix containing the Hagen-Poiseuille conductances 
in edges 〈i, j〉, pi to be the pressure at node i, and Vij to be the volume of 
edge 〈i, j〉. By convention Kij and Vij are zero if 〈i, j〉 ∕∈ E. We ensure that 
fluid is neither created nor destroyed by imposing conservation of mass 
on the entire system, which is ensured by equations enforcing that mass 
is neither created or destroyed at each node. These equations inform the 
eventual assignment of pressure at each node, which, paired with 
designated volume changes, determines flows which precisely conserve 
mass in the system. In this case, this amounts to asserting that total flow 
into a node is balanced by total flow out. Using Eq. (2) measured at z =

− L
2, conservation of mass results in: 

∑

j∈VG

κij
(
pi − pj

)
= −

1
2
∑

j∈VG

dVij

dt
(3) 

This equation is written compactly in vector form as LKp = b where 
LK is the weighted graph Laplacian with weights prescribed by K, p =

(pi), and bi = − 1
2
∑

j∈VG

dVij
dt . This equation can be solved uniquely so long 

as the graph is connected and a pressure gauge node is prescribed 
(Forrow et al. 2018). Intuitively, such a gauge node is needed because 
flows are determined by pressure differences only, and so the problem 
must be supplied with a node to call “gauge pressure,” i.e. the node that 
defines what all other pressures are compared to. 

2.1.3. Relating observed volume changes to flows 
Section IIA2 gives us the tools to relate observed volume changes to 

actual flows on the network. We define Qij to be the flow in edge 〈i, j〉 
measured at the center of the tube, and define the flow to be positive if it 
goes from node i to node j with j > i, and negative otherwise. The flow in 
each tube measured at the center (i.e. z = 0) is linearly related to the 
pressure gradient across each tube, which in turn is linearly related to 
the volume change, so a linear relationship between flows and tube 
volume changes can be calculated. With this definition, q and v are 
vectors containing the flows and volumes of all edges. We may thus 
derive the linear relationship 

q=Γ
dv
dt

(4) 

Γ, the linear map above, is a function both of tube geometry and 
network topology. Mathematically, Γ may be written in terms of 
previously-defined quantities as 

Γij = −
1
2
Kij

(
ei − ej

)T L− 1
K B (5)  

where ei is the ith euclidean basis vector and B is a matrix such that Bik is 
1 if node i is an endpoint of edge k, and 0 otherwise. At a given instant in 

time Γ encodes how the network’s observed characteristics—tube 
expansion/contraction, network topology—transform into the flows 
that transport fluid through the organism. Γ is a dense matrix, which in 
this case means that a volume change in any edge of the network affects 
the resulting flow in the rest of the network. The intuition behind how Γ 
produces flows from volume changes is shown in Fig. 2. 

2.1.4. Analyzing important volume change modes with the mapping Γ 
Given that images of P. polycephalum induce highly complex net-

works that contain sometimes over 1000 edges, Γ is typically a mapping 
that operates on extremely high-dimensional space. To make reasonable 
sense of what Γ is doing, it is therefore useful to capture the lower- 
dimensional essence of Γ. To do this, we employ the Singular Value 
Decomposition (SVD), which decomposes Γ into many orthogonal 
mappings and ranks these orthogonal mappings in order of importance 
by assigning each one a singular value. These mappings are referred to in 
this paper as component mappings. The SVD decomposes Γ as follows: 

Γ=UΣVT (6)  

where Σ is a diagonal matrix comprised of nonnegative singular values 
σj, which are typically sorted in descending order from the top left to 
bottom right of the matrix, and U and V are orthonormal matrices whose 
columns contain the left and right singular vectors of Γ respectively. The 
decomposition is such that, given the ith columns ui and vi of U and V, 
Γvi = σiui. The SVD is similar to diagonalization in that important 
modes can be analyzed, but it has the added benefit that all numbers 
including singular values are real, so important component mappings 
can be visualized simply. 

The SVD can be used to lower the dimension of a representation of a 
given matrix by truncating the amount of mappings one wishes to 
consider. For example, the mapping Γ could be (rather poorly) 
approximated using only 10 degrees of freedom by cutting off all but the 
first 10 columns of U and V and taking the upper-left 10 × 10 submatrix 
of Σ, then re-multiplying the decomposition. This idea is used exten-
sively in Principal Component Analysis (PCA), but PCA is used for 

Fig. 1. A schematic of the processing pipeline in our 
method. Shown is taking the first frame of Movie S1, 
extracting graph morphology, and finding the mode 
of top importance for our mapping Γ. Γ takes in a 
vector of tube contractions or expansions (visualized 
in B), and outputs a vector of flows (visualized in C). 
In these visualizations, red corresponds to tube 
expansion in B and high flow in C; blue corresponds 
to tube contraction in B, and low flow in C. The 
mapping itself generates the modes in both B and C 
once data has been processed.   

Fig. 2. A diagram of how the mapping Γ operates on the network. The quantity 
Γji

dVi
dt represents the contribution of edge i’s expansion or contraction to the flow 

in edge j. Edge j’s flow is the sum of contributions from all other edges in the 
network, i.e. Qj =

∑
iΓji

dVi
dt . 
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symmetric matrices whose inputs and outputs are assumed to be from 
the same space. In contrast, our inputs are networks contractions and 
outputs flows, so PCA can’t be directly used. 

Importantly, the SVD also identifies important modes that the 
mapping acts on. In our case, we use the SVD of the mapping Γ to 
consider the effects of geometry and topology on flow generation given 
primary volume change modes. 

2.2. Extracting network information from data 

Here we outline the steps taken by our custom Matlab code to extract 
dynamic morphological information from data. 

2.2.1. Creating the master network for the video 
Over the course of a time sequence of microscope images, some tubes 

disappear due to pruning, and some disappear and reappear as they lose 
contrast with the background via contraction. For these reasons, the 
network’s topology changes with time. To account for this, we first need 
to create a master network that contains all possible tubes that exist over 
the course of the time sequence. We then define the time-varying net-
works as subgraphs of this master network. Here it is important to note 
that our process assumes that the organism doesn’t move or change 
shape with time, which restricts the data we can process to networks that 
are not migrating. 

To create this master network, we take the median of approximately 
50 frames exhibiting dense versions of the network to capture an arti-
ficial image where contrast between tube and background is ideal for 
thresholding and noise is dampened. We then create an image mask via 
adaptive local thresholding (Matlab adaptthres). This mask is then 
skeletonized to create an image mask whose tubes are only a single pixel 
thick. Through a custom algorithm similar to the often-used anaskel 
(Fetterman 2022) called skel2graph (included in the code accompa-
nying this paper), the network topology (i.e. the nodes and the edges of 
the network) is then extracted from the skeleton. Alongside this network 
topology, our algorithm also returns a labeled binary image that records 
the actual geometric shape of each edge for use later in measuring data 
features. 

2.2.2. Measuring geometric and topological features for each microscope 
frame 

Armed with the master network, we now proceed to measuring 
frame-by-frame information. We analyzed three sequences of Physarum 
images (Movies S1, S3, and S5 from (Kramar and Alim 2021)), which 
were chosen as data because they each demonstrate qualitatively 
different morphologies and behaviors over the course of the data. Movie 
S1 is a topologically consistent, densely connected network for the 
whole video. Movie S3 is topologically consistent as well, but with much 
less density than Movie S1. Movie S5 demonstrates a marked change in 
topology after a food stimulus is introduced, and is also fairly densely 
connected until pruning thins the organism. In the following, we identify 
morphological and dynamic measurements of these three videos and 
compare them. For each frame, we again create an image mask with 
adaptive thresholding. Adaptive thresholding considers a window of 
pixels around the pixel of interest and forms a threshold to separate 
foreground and background from grayscale data. We then directly 
associate each pixel in the mask with an edge from the master network. 
If an edge has no mask pixels associated with it, it is removed from the 
network for the given frame. 

For each associated edge, we then compute tube volume. In previous 
works (Alim et al. 2013; Bäuerle et al. 2017; Fleig et al. 2022), tube 
volume was argued to be inversely correlated to pixel intensity by the 
Beer Lambert Law, and as such intensity values of each pixels were used 
as an indirect measurement of tube contraction state. In our application, 
we utilized a compressed. mp4 video format taken directly from the 
supplementary materials of (Kramar and Alim 2021), yielding frames 
that were lower in dynamic range and resolution than previous work. 

Intensity measurements on the graph skeleton, therefore, suffered from 
a low signal-to-noise ratio, and didn’t prove very useful as a proxy for 
volume. To smooth out this noise, we integrated intensities over entire 
tubes using the following model: 

Volume=
∑

i∈tube
DA

I0,i

Ii
(7) 

This model reflects the fact that thicker edges are darker, and that the 
apparent darkness of a pixel reflects how much light is absorbed or 
scattered in the imaging. The sum is taken over all pixels i that make up 
the section of the mask associated to a given edge. Here, D is a length 
scale relating intensity to length, A is the area of each pixel, I0,i is the 
intensity of the background around pixel i (assumed brighter than a pixel 
on the tube), and Ii is the intensity of pixel i. Mathematically, this is an 
approximate integral of a height function over an area, which produces a 
volume. Since we were primarily concerned with measuring volume 
dynamics and not accurate measures of volume, the scaling constant D 
was assumed to be 1 for this analysis. With this model in hand, we were 
able to recapitulate the measurement smoothness shown in previous 
works even with our compressed data. 

We then calculated an average radius for each tube by assuming that 
tubes are perfectly cylindrical. In this case, 

radius=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Volume

πL

√

where L is the arc length of each skeletonized edge. 
Finally, given that our model in Eq (5) relies on volume change dy-

namics, we computed dv
dt. Given that we are interested primarily in 

expansion/contraction dynamics and not growth, we first detrended our 
volume data by subtracting off a moving mean of width corresponding 
to two typical contraction periods. We then smoothed the data via 
Matlab smoothdata and took a simple finite difference to calculate dv

dt in 
each edge. 

2.2.3. Identifying flow modes on Γ 
Armed with frame-by-frame network features, we could then define 

our matrix Γ from Eq. (5) for each frame. To identify the important 
component mappings of Γ, we employed the SVD as described in section 
IIA4. However, given that the total volume of the network is assumed to 
be conserved, we first restricted our input vectors dv

dt to sum to zero via a 
projection P onto the space of volume-conserving vectors. Identifying 
these volume-conserving modes was then achieved by taking the SVD of 
ΓP. A visual representation of the modes detected in a network con-
sisting of tubes attached end to end is given in Fig. 3. This visualization 
shows some of the typical features of our modal analysis: the visual 
similarity of normal modes to some of the eigenmodes of the graph- 
Laplacian (i.e. discrete sine waves), and the tendency of higher modes 
to have finer length scale variations in the amount of contraction or 
dilation. Additionally, single cellular tubes are biologically interesting in 
their own right; they can be readily realized experimentally, and are a 
common configuration for a network that is on the verge of migrating. 

2.3. Relating flow modes frame by frame for dynamic information 

Given that the topology of the network is not assumed to be constant 
from frame to frame, and that the ordering of important modes is also 
likely to change over time, we devised a way to register similar modes to 
each other between frames. First, to account for differing network to-
pologies, we only compared modes using edges common between 
frames via a euclidean distance. Using these calculated mode similarities 
between two frames, we then solved the linear assignment problem 
(Duff and Koster 2001) to register modes to one another frame-by-frame. 
Due to the complexity of the problem, we restricted this dynamic 
analysis to the top 20 modes of the mapping. This assignment allowed us 
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to form the continuous mode coefficient plots visualized in Fig. 7. 

3. Results 

First, we derived a physical model that incorporated changing tube 
contraction states into flow calculations. This model resulted in a linear 
map, Γ (Eq. (5)), that takes instantaneous contraction rates as input and 
outputs networkwide cytoplasmic flow. The modes and singular values 
analyzed in the following are those of this mapping Γ, and represent a 
whole-body analysis of the connection between network morphology-
—encoded in Γ—and dynamics. Further details on Γ are included in 
section II. 

We analyzed three sequences of Physarum images (Section II.B.2), 
which were chosen as data because they each demonstrate qualitatively 
different morphologies and behaviors over the course of the data. Movie 
S1 is a topologically consistent, densely connected network for the 

whole video. Movie S3 is topologically consistent as well, but with much 
less density than Movie S1. Movie S5 demonstrates a marked change in 
topology after a food stimulus is introduced, and is also fairly densely 
connected until pruning thins the organism. In the following, we identify 
morphological and dynamic measurements of these three videos and 
compare them. 

3.1. Topological and geometric measurements 

To identify the dynamical function of network morphology, we uti-
lized the singular value decomposition (SVD) of the modeled mapping 
(Γ from Eq. (5)) that takes as input network contraction dynamics and 
outputs cytoplasmic flows through the network. The Γ matrix encodes 
both network geometry and topology via inclusion of the weighted 
graph Laplacian, and so an analysis of Γ is an analysis of the function of 
the particular network morphology, in determining how many flow 

Fig. 3. A singular value decomposition of a network of 50 tubes connected end to end. We visualize the modes of the SVD of Γ computed on a random volume- 
conserving selection of tube contractions to demonstrate the features that the SVD is capturing when it computes modes. 

Fig. 4. Visualized are the top component mappings of Γ for frame 1 of all 3 of our datasets. Red indicates tube expansion or high flow, blue represents tube 
contraction or low flow. (A–C) the right singular vectors of Γ, corresponding to contraction/expansion patterns that lend themselves to produce the highest flow. 
(D–F) the absolute values of the left singular vectors of Γ, corresponding to the distribution of flows created by the particular contraction/expansion patterns above 
them. Tubes that get the most flow (colors that are not deep blue) correspond to thicker tubes in the dataset. 
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modes a single network can support by tube contractions and dilations. 
The SVD of Γ ranks important contraction distributions by the relative 
sizes of the flows they are able to produce in the network. 

What do these contraction distributions look like? Our model shows 
that linear variations in contraction velocities produce largest flows. In 
Fig. 4, we observe that, despite different shapes and topologies, the 
highest ranked mode of Γ takes a linear gradient of contractions (top 
row) and creates flow along the thickest tubes that are approximately 
parallel to gradient direction (bottom row). Although the patterns of 
contraction (modes) seem to be little influenced by the hierarchies of 
tube radii present within the network, the flows associated with modes 
of contraction (Fig. 4D–F) are channeled substantially through the 
thickest vessels of the organism, affirming the importance of these high 
radius vessels to network-wide transport P. polycephalum. 

The spectrum of singular values of Γ measures the number of 
different modes of contraction and dilation the network can support, and 
is a functionally important readout of the network’s shape. Specifically, 
we focus on how many modes are needed to describe the entire Γ 
mapping. Following conventions adopted in other mode-analyses, such 
as PCA, we determine the number of modes needed to make up 90% of 
the total map magnitude. Mathematically, finding this number is 
equivalent to taking the cumulative sum of the singular values in 
descending order and stopping when you reach 90% of the total singular 
value sum. For all three of the mapped networks, and over all time 
points, the percentage of singular values needed to take up 90% of the 
total singular value sum was between 43% and 47% of the total number, 
which is simply the number of edges within the network. 

To further understand Physarum’s spectrum of singular modes, and 
how it varies over time and between different Physarum individuals, we 
plot the singular values themselves, in descending order for a variety of 
conditions. We first plot the spectrum as a function of the absolute mode 
index, a number that ranges from 1 to the number of edges in the 
network (Fig. 5). The blue areas enclose the upper and lower quantile of 
the singular values for the entire time series, sampled every ten frames. 
Consistent with our analysis of the number of significant singular values, 
we found the spectrum to be extremely broad, with the singular value of 
mode n best fit by a power law: n− 2/3. 

To probe the influence of the network structure, we first compare the 
spectra of real Physarum with synthetic networks in which we permute 
tube radii across the entire network, leaving the total variance in tube 
radii unaffected, but randomly disconnecting high conductance path-
ways and thus any spanning trees that the network may contain (Fig. 5, 
red regions: upper and lower quantiles of the ordered singular values). 
The blue and red regions show considerable overlap, indicating that the 
singular values are mostly unaffected by a shuffling of radii throughout 
the network. This overlap suggests that the specific arrangement of high 
conductance tubes within the network does not influence the structure 

of its most effective patterns of contraction, and nor does it strongly 
affect the scale of flows that these most effective modes can create 
within the network. Instead, the data suggest that the network is mostly 
isotropic. Given that most protoplasmic flow is predicted to be contained 
in the thickest tubes, as indicated in Fig. 4, isotropy of the thickest tubes 
may allow the network to push fluid in any or all directions when it 
encounters a new food source. 

Although the precise arrangement of high conductance tubes is little 
distinguishable from isotropic arrangements, the presence of tube radius 
hierarchies strongly affects the magnitudes of flows created within the 
network. To probe the contribution of tube radii, we compare real net-
works with a second class of synthetic network, in which all tubes are 
uniformly given the same radius (black shaded curves in Fig. 5). Uniform 
networks are markedly lower than the correspondent hierarchical net-
works for the first few hundred modes, about 400 for Movie S5 and 250 
for Movie S3. Singular values of Γ correspond directly to the amount of 
flow that a given unit network contraction can create, and so lower 
singular values in the black region indicate that networks with uniform 
thickness can produce less flow for a given contraction pattern than 
those with radius hierarchy. The continuous spectrum of modes, too, 
creates flows in a variety of different directions. Combined with the 
importance of radius hierarchy, we observe that Physarum’s morphology 
is optimized to produce high flows in any direction. 

We also study how the spectrum of singular values varies with time. 
Movie S5 shows a large organism that prunes itself drastically over the 
course of the dataset after food is introduced. During this drastic change 
in topology, we observe self-similar changes in the spectrum of singular 
values. Shown in the top left of Fig. 6 in blue is the cumulative sum of the 
singular values in descending order for every 10 frames of the video. As 
edges are pruned the total number of modes goes down (total number of 
modes is equal to total number of edges), as does the total sum of sin-
gular values. However, if the cumulative sum of singular values is 
normalized by the total sum, and the modes as a fraction of the total 
modes (Fig. 6 B), the curves collapse into a single blue band. An alter-
native framing of this result is that in the starting and in the pruned 
networks, the relative contributions of any percentage of modes to the 
total cumulative value sum remain constant. This is not an obvious 
result and further analysis of Γ may elucidate why its spectrum is 
invariant in this way, to pruning. Pruning has hitherto been assumed to 
be a coarsening process, that grows the largest tubes at the cost of the 
smallest. Described in this way, we would expect it to emphasize 
stronger modes and suppress weaker modes, changing the shape of the 
spectrum. 

We see the same self-similarity in the changing singular value 
spectrum over time for the entirety of Movie S3 (Fig. 6 C, D). The 
plasmodial network in Movie S3 does not experience significant tube 
pruning, but it does demonstrate a significant increase in visible cross- 

Fig. 5. Singular values are plotted in descending 
order for a variety of conditions. The blue shape is the 
interquartile range of singular values for every 10 
frames in both datasets. The black shape is the 
interquartile range of singular values (measured 
every 10 frames) when all radii in the network are set 
equal to their mean. The red shapes are the inter-
quartile ranges of the singular values of synthetic 
networks whose radii have been randomly permuted 
100 times both before and after food is added, hence 
the reason two seemingly distinct red shapes appear. 
Panel A: red regions are taken from synthetic net-
works coming from permutations of radii in frames 
761–821 and 2471–2531 of Movie S5, sampled every 
ten frames. Panel B: red regions are taken from syn-
thetic networks coming from permutations of radii in 
frames 461–491, 511–531, and 2871–2931 of Movie 
S3, sampled every ten frames.   
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organism peristalsis. That the mode spectrum in both organisms changes 
self-similarly, may reflect constraints in how strongly the singular values 
of Γ can be localized in a small number of modes, further supporting the 
inferences made before, that the specific arrangements of tubes and their 
radii have little effect on the singular modes. We cannot rule out, 
however, that tube hierarchy has undetected importance, and that the 
invariance of the spectrum of singular values under pruning and other 
network changes, reflects some symmetry of how pruning and other 
network changes operate on different scales of tubes. 

The synthetic networks created for Fig. 6 A, C (red), by permuting the 
tube conductances in real networks, collapse to the same master curve as 
real networks after normalization rescaling in both the network shown 
in Movie S5 (Fig. 6 B), and the network shown in Movie S3 (Fig. 6 D). 
The spectra at different time points overlap for real and synthetic net-
works over most of the significant singular values, and though the real 
network has a slightly broader spectrum than the synthetic network in 
S5, the places are reversed in S3, suggesting that there is no significant 
difference between the normalized spectra. Conversely, in synthetic 
networks with uniform radii (black lines in Fig. 6), the spectrum lies 
slightly underneath both real and permuted spectra, both with and 
without normalization. This small difference, consistent between the 
two networks suggests that the singular values of the top modes of the 
uniform network are not as top-heavy, suggesting that mild selection 
occurs for the first few modes in networks with some radius hierarchy. 

3.2. Measuring emergence of coherent pumping 

Spectral analysis of Γ gives us a readout of what internal flows a 
network can generate through tube radius changes. When real measured 
volume changes are projected onto these modes, they provide a reduced 
basis for describing the pumping that occurs in the network. A compli-
cation here is that, as shown in section IIB, the topology of the measured 
network changes frame-by-frame, albeit by the gain or loss of only a 
handful of edges among hundreds for the networks analyzed here. 
Because of network changes, Γ’s matrix representation changes size over 
time. However, although the total number of contraction modes changes 
over time, we find that the most important calculated contraction modes 
maintain their order, and approximately, their singular values. We 
proceeded, therefore, to analyze the coefficients of the projections of the 
data onto the top 20 modes of the system (see section IIC) during in-
tervals in which we visually identified the emergence of coherent tube 

oscillations. Movies S1 and S3 were chosen because they contain sec-
tions of video centered around both the introduction of food and also 
visual peristaltic waves moving through the organism. The coefficients 
of the first modes are shown for excerpts of both video sequences in 
Fig. 7. 

How does the presence or absence of visual peristalsis affect the 
readout of our mode coefficients? Movie S3 probes a rather stable, cir-
cular network with barely perceptible contraction dynamics before food 
is added. At frame 500 (minute 0), food is added outside of the frame, 
and coordinated peristaltic contraction patterns become visible. Movie 
S3’s mode coefficients (Fig. 7 A) at the moment of food introduction 
show clean oscillatory behavior in line with the previously measured 
peristaltic frequency of about 90 s (30 frames) (Alim et al. 2013). We see 
the mode coefficients reflecting the visual emergence of coordinated 
peristalsis: around 240s (80 frames) following the introduction of the 
cue the amplitude of all coefficients increases X-fold. Amplitude in-
creases are greatest for the top modes, showing that pumping occurs 
preferentially in the modes with greatest flow creation potential (i.e. 
greatest singular values). 

Movie S1’s mode coefficients (Fig. 7 B) show the emergence of 
coherent pumping from initially highly disordered contractions. Visu-
ally in the large, dense network imaged in Movie S1, contraction pat-
terns appear random across the organism. There are brief instances, 
however, when a cross-organism peristaltic wave presents itself—here 
we see one such instant at around minute − 4 (around frame 1900) of the 
video. Before this instant, we see large-amplitude, unaligned oscillations 
on the order of 10–15 frames which could likely come from a mixture of 
uncoordinated pumping and aliased (noisy) data. When organism-wide 
pumping is observed, we observe clear, coherent oscillations whose 
period (90 s) matches published data on Physarum time-oscillations. It is 
as of yet unclear what stimulus, if any, triggered the appearance of 
coherent contractions, as food had not yet been added, nor what trig-
gered their disappearance. 

Results from our modal analysis are qualitatively consistent with 
previous descriptions of Physarum behavior. Specifically, we find that in 
networks presented with no food source, tube wall oscillations may be 
coherent, with small amplitudes (S3), or incoherent, likely presenting as 
high frequency modes due to a combination of noise and aliasing effects 
(S1). When presented a food source, we see existing coherent multi-
modal oscillations gain amplitude. Coherent multimodal oscillations 
emerge from noise and disappear spontaneously. We obtain additional 

Fig. 6. Singular value distributions, both scaled and 
unscaled, are plotted for Movies S3 and S5. In all 
plots, red lines are synthetic graphs with radii of 
edges randomly permuted, black lines are synthetic 
graphs whose radii are all set to the average radii for 
the given frame, and blue lines are actual singular 
value distributions for measured radii. For blue and 
black lines, data is measured every ten frames for the 
entirety of the dataset. For red lines, 100 random 
permutations are generated for a selection of frames 
before and after food is added. (A and B) red lines are 
taken from permutations of radii in frames 761–821 
and 2471–2531 of Movie S5, sampled every ten 
frames. (C and D) red lines are taken from permuta-
tions of radii in frames 461–491, 511–531, and 
2871–2931 of Movie S3, sampled every ten frames. (A 
and C) cumulative singular value sum of singular 
values in descending order is plotted versus singular 
value number. (B and D) same as the A and C, except 
the x and y axis have been scaled down by number of 
singular values and total singular value sum, 
respectively.   
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quantitative data on the time delays between the food source being 
presented, and the amplification of coherent oscillations, as well as on 
the suddenness of amplitude increase. 

4. Discussion 

Coordinated contractions of tubes in P. polycephalum enable the or-
ganism to achieve a remarkable repertoire of behaviors, including 
generating network-wide transport of nutrients and protoplasm, whole 
organism migration and network remodeling. Here, we develop a new 
tool for quantifying how many network-wide contraction patterns a 
single organism is capable of, anatomizing those patterns, and identi-
fying, instant-by-instant, which modes are active within the network. 
Our method originates in a linear mapping, Γ that ties together all of P. 
polycephalum’s directly measurable quantities—topology, geometry, 
contraction dynamics— into an easily-interpretable and mechanistic 
model of fluid flow. The mapping generates theoretical contraction 
modes for the given network morphology that are ranked by how much 
flow they create and thus may be linked to notions of efficiency of 
transport that have already been extensively studied for the organism 
(Grebecki and Cie’slawska 1978; Watanabe et al. 2011; Bonifaci et al. 
2012; Alim et al. 2013; Baumgarten and Hauser 2013). Our identified 
flow modes correspond remarkably well to purely data-driven mea-
surements of contraction modes. Since Γ also directly computes the 
flows that arise from these contraction distributions, when paired with 
data, Γ can be used as a measure of how much the network is working to 
transport fluid at any time. 

The modes of Γ can be interpreted as the directions in which con-
tractions can most readily generate flows within the network. The modes 
are readily computed via singular value decomposition, and the spec-
trum of modes reflects the range of flows that a network is able to easily 
support. We find that the greatest flow (largest singular value) modes 
align with the optimal peristaltic phase distribution of (Alim et al. 
2013), being a linear gradient of contraction strengths. 

Although our findings are confluent with previous qualitative and 
quantitative descriptions of Physarum behaviors, they go beyond exist-
ing analyses and methods, such as PCA. Importantly we may interpret 
the modes of Γ as directions in which the large internal flows may be 
created, allowing the contraction pattern of the network to be physically 
linked to its architecture. Analysis of pumping modes through the 
mapping Γ, highlights the role that network hierarchy plays in creating 
directions of greatest flow. 

Surprisingly, we found the spectrum of possible modes within all of 
the analyzed networks to be remarkably broad; and that the number of 
significant singular values was not strongly affected by the hierarchy of 
tube radii seen within the network. This result should not be interpreted 
to mean that tube radii hierarchies are unimportant, since the singular 
values of the (real) hierarchical networks are greater than in (synthetic) 
networks in which all tube radii are made uniform. So hierarchies of 

tube radii allow larger flows to be created within the network, meaning 
that they increase the flow response to changes in tube radii. Yet, we 
found relatively small differences between the spectra of real hierar-
chical networks, and those of variable-tube networks in which all tube 
radii had been randomly permuted. Our results highlight the need for 
future mathematical analysis of what features of a graph determine its 
Γ-spectrum: including of the relationship between the Γ-spectrum and 
the spectrum of the network’s graph Laplacian, and study of the roles 
played by network topology, such as the adjacencies of tubes or their 
density, and by the shape of the network’s boundary. 

The insensitivity of the Γ-spectrum to vessel hierarchy is somewhat 
at odds with previous work that has stressed importance of the largest 
vessels in setting the flows that occur within a network, and which have 
motivated previous studies that reduce the network to a tree for analysis 
(Tero et al. 2010; Woodhouse et al. 2016; Forrow et al. 2017). 
Conversely, our calculated modes of tube contractions and dilations are 
not affected by the degree of radius difference between the largest and 
smallest tubes in the network, and consist of simple gradients of tube 
volume changes across the organism. The lack of appearance of the 
largest diameter tubes in the principal modes, suggests rather that 
approximating the network as having uniform tube radius, or even as a 
material continuum, may be pursued as a way to obtain relatively ac-
curate approximations of the most efficient contraction modes, and 
indeed that these modes may be calculable only from the shape of the 
organism’s boundary. This conclusion may seem at odds with previous 
theoretical and experimental work (Tero et al. 2010; Woodhouse et al. 
2016; Forrow et al. 2017) that has emphasized the importance of tube 
hierarchies, we note that over longer time scales than are analyzed here, 
hierarchies of tube radii shape the network’s morphological adaptation 
since hierarchies affect the hydraulic stresses in vessels, which deter-
mine which vessels are pruned (Marbach et al. 2023). Hierarchies of 
tube radii are certainly important to calculating the flows created by the 
principal modes of contraction, with the largest tubes funneling flows 
created by the modes of contraction and dilation (Kramar and Alim 
2021). 

The spectrum is also surprisingly broad, again reflecting the fairly 
minor role played by the hierarchy of tube radii in selecting particularly 
favorable modes of tube contraction and dilation. This result, though 
largely consistent with the broad spectra that were previously identified 
through PCA analysis (Fleig et al. 2022), sounds two notes of caution: 
first, even if we accept that flows within the network are confined to a 
fairly narrow band of possible modes (Forrow et al. 2017), it does not 
automatically follow that the patterns of contraction used by the 
network to create these flows are similarly constrained in diversity. 
Second, the potential utility of modal analysis to reduce high dimen-
sional data on the velocities of contraction of every individual tube, to 
low dimensional subspaces capable of completely describing every 
pattern of contraction that we might observe within the real network, is 
unlikely to be realized. In its place, our analysis emphasizes the breadth 

Fig. 7. The top 20 mode coefficients are visualized 
for Movies S1 and S3. Colorbar shows ordering of 
modes from first (red) to 20th (blue). (A) Movie S3’s 
coefficients form coherent oscillations throughout, 
increasing in amplitude over the excerpted frames. 
Lower modes attain higher amplitudes. (B) mode co-
efficients in Movie S1 are only intermittently 
coherent. The data corresponding to periods in the 
video without clear and visible peristaltic contraction 
patterns do not seem to show oscillation. The long 
period of coherent oscillation corresponds to a visible 
peristaltic wave in the video.   
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of the space needed to describe Physarum’s behavioral repertoire, and its 
potential responses to new cues from its environment, and echo (Fleig 
et al. 2022), in suggesting that this space allows for an extremely large 
array of behavioral responses, with no clear distinction between the 
important and the unimportant. 

These spectral features may reflect the life history stages in which 
experimental data was collected, in the main video sequences analyzed 
here, a cut Physarum network is imaged before and shortly after it en-
counters a new food source. Accordingly, the networks that are mapped 
here may be adapted toward isotropic vessel arrangements, since both 
the direction in which new food will arrive, and the directions with 
which nutrients will need to be transported, are not known to the 
network. In addition to the natural mathematical progressions suggested 
above, biologically it would be interesting to contrast the results pre-
sented here, largely confined to initially static networks that then 
assimilate small numbers of food sources, with analysis of how the 
number of modes in the spectrum evolves when a network undergoes 
substantial pruning – i.e. that encounters and assimilates disparate and 
wide spread food sources, and where the dominant form of morpho-
logical adaptation is one of vessel loss to build an optimal linking 
network (Tero et al. 2010). In these networks, adaptation may be for a 
small number of peristaltic modes, as the network organizes itself 
around a known, small, set of known food sources, rather than in 
preparation to encounter new food sources. 

Since the matrix Γ is new to this study, ongoing work is necessary to 
find how the real Physarum networks compare with other model net-
works. However, Γ is partly based upon the inverse Laplacian, the 
spectrum of which has been characterized for many model networks. 
Our spectrum, whose modes decay like n− 2/3, is much broader than for 
empirical scale free networks for which (McGraw and Menzinger 2008) 
measures that the eigenvalues of the inverse Laplacian scale approxi-
mately like n− 3. They are even broader than the spectrum of Laplacian 
eigenvalues for a totally homogeneous network. In the limit of large 
networks, we would expect this spectrum to approach to the spectrum of 
the inverse Laplace operator on 2D domain. Absent strong asymmetries 
of shape, the Laplace operator has eigenvalues λm,n = 4π2

L2 (l2 + m2), 
where l, m are the wave numbers in two orthogonal directions. Hence, 
the inverse Laplacian for a uniform network has O(N2) eigenvalues that 
are larger than 1/N, and, correspondingly, we would expect that the nth 
eigenvalue of the operator would be ~ n− 1/2, which decays only a little 
slower than our measured spectrum. Further analysis is needed to 
disentangle how much of the difference is due to the structure of our 
operator, and how much of the difference is due to structural features of 
Physarum networks. 

We add some notes of caution about the kinds of behavioral data for 
which our method can provide quantification. The results in this paper 
are derived from compressed video files, at typical resolutions of 70–200 
pixels per millimeter, and since tube diameters are on the order of 0.05 
mm (as few as 4 pixels) to 0.2 mm, pixel noise in the radii of individual 
tubes is visible in some of the data. When spectral expansions are per-
formed on the contraction dynamics, aliasing effects occur, in which we 
fail to see the expected decay of mode amplitudes across modes and in 
fact, there is apparently high frequency ringing in modes. Thus, 
although the emergence of concerted patterns of peristalsis leads to clear 
signals, we can not dismiss that the high frequency oscillations in Fig. 7 
result from processing noisy measurements, rather than reflecting real 
patterns of organization of contractions. Careful assessment of the 
quality of data is important before using this, or any spectral method, 
since in every mode, the coupling of contractions across all tubes means 
that small measurement errors in the finest scales can produce 
contaminating signals in any mode. In further analysis we will seek to 
apply our model to high resolution microscope images, and to develop 
anti-aliasing that filters out the smallest scale contractions when pro-
jecting contraction data onto our modes. 

We leave for future work the use of Γ-modal analysis on a wider 

variety of data, especially sequences in which the network is allowed to 
travel in search of new food sources. Even when networks are not 
migrating, quantification of memory and long term behaviors requires 
tracking contraction modes over longer time sequences, during which 
the topology of the network can change. In this study, we were able to 
project tube radius changes onto a small set of modes that remained 
relatively constant over the entire sequence of the video. Mode ordering 
is not in general guaranteed, when the Γ matrix varies, due to the 
altering plasmodial network. Alternative data assimilation methods, 
including Multi-Hypothesis Tracking (Coraluppi 2015), may allow the 
challenges associated with time-varying modes, to be overcome. 
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