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Dispersive transport dynamics in porous
media emerge from local correlations

Felix J. Meigel1,2, Thomas Darwent3, Leonie Bastin1, Lucas Goehring 3 &
Karen Alim 1,4

Understanding and controlling transport through complexmedia is central for
a plethora of processes ranging from technical to biological applications. Yet,
the effect of micro-scale manipulations on macroscopic transport dynamics
still poses conceptual conundrums. Here, we demonstrate the predictive
power of a conceptual shift in describing complex media by local micro-scale
correlations instead of an assembly of uncorrelatedminimal units. Specifically,
we show that the non-linear dependency betweenmicroscopic morphological
properties and macroscopic transport characteristics in porous media is
captured by transport statistics on the level of pore junctions instead of single
pores. Probing experimentally and numerically transport through two-
dimensional porous media while gradually increasing flow heterogeneity, we
find a non-monotonic change in transport efficiency. Using analytic argu-
ments, we built physical intuition on how this non-monotonic dependency
emerges from junction statistics. The shift in paradigmpresented here broadly
affects our understanding of transport within the diversity of complex media.

Dispersive transport through complex media has been in the focus of
researchers across disciplines, with applications ranging from
semiconductors1–3, to liquid crystals4,5, and biological soft matter6,7.
Among those applications, fluid flow driven transport through porous
media emerged as a paradigmatic system for the study of dispersive
transport dynamics8–11: beside its experimental tractability, transport
throughporousmedia by themeans offluidflow is omnipresent in both
inanimate and living systems, whenever manipulating, controlling, and
retracing transport are central concerns. On the technical side, appli-
cations range from oil recovery to carbon geosequestration and che-
mical reactors12–19, while on the biological side understanding the
functioning of living systems, like vascular systems20–24, algal colonies,
or biofilms7,25, crucially depends on tracing how resources spread
through biological systems. Porous media show a broad range of dif-
ferentmorphologies andmodifying their pore network structure, either
by internal or external influence, allows for altering and controlling
transport26,27. Yet, how manipulations of porous media morphology on
the micro-scale affect macroscopic transport characteristics is still

hardly understood. What are the general mechanisms and control
parameter that dictate dispersive transport dynamics and allow for
efficient transport in porous media?

Porous media pose heterogeneous environments through which
particles are transported by both advection and diffusion. Already in
single pores, the interplay between these two transport modes gives
rise to intricate transport dynamics, as prominently displayed by Taylor
dispersion28–32, which enhances mixing rates. Transport through a pore
network adds another level of complexity, as a vast heterogeneity of
flow rates is a defining characteristic of porous media, and pores with
drastically different flow rates frequently adjoin each other33–35. Though
detailed physical insight on transport at the single pore scale is avail-
able, understanding transport on the macroscopic scale by scaling up
and extending the methods used on the pore scale is inhibited by
complexity and numerical costs36–39. To overcome this conceptual
barrier, a variety of models have been developed to describe the per-
meability, flow, and transport through porous media directly on mac-
roscopic levels40–42, including effective advection–diffusion equations43,
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fractional advection–diffusion equations44, continuous time random
walk models8,9,11,45–49, and memory kernel approaches50,51. While these
models have proved successful, especially in geological applications,
they remain partly based on phenomenologicalmodel assumptions like
empirically derived waiting time distributions or memory kernel choi-
ces. Yet, connecting changes in the pore statistics to macroscopic
transportdynamics is critical for applicationswherea key challenge is to
control transport by manipulating the microscopic structure26,52,
including technical applications16,17 and the understanding of transport
in biological systems27. While Darcy’s law53 estimates mean transport
dynamics, here often the central task is to optimise the efficiency of
solute transport. Increasing the efficiency implies minimising the dis-
persive spread and thus deviations from the mean transport
dynamics54,55: decreased variability in the transport increases the infor-
mation quality of the mean transport dynamics, see also supplemental
theory section 1.1. As porous media are often used in chemical reaction
chambers to maximize the catalyst-fluid interface, a precise control of
the dispersive spread is crucial to optimise chemical reaction cells56–59

and bio-technological applications60,61.
Investigating how manipulating the microscopic structure of

porous media optimises transport efficiency, we uncover a change in
paradigm: instead of using the statistics of individual pores, the sta-
tisticsof pore junction units allows understanding of howmacroscopic
transport statistics emerge andprovides information about bothmean
transport dynamics and the efficiency of transport. Analysing trans-
port through pore junction units accounts for connections between
pores with vastly different flow rates—details that are neglected by
considering the statistics of individual pores. Combining experiments,
simulations, and theory on two-dimensional porous media, we find
that transport efficiency shows a counter-intuitive non-monotonic
dependency on the heterogeneity of the pore space. Starting from a
regular pore space, the transport efficiency initially increases, if the
heterogeneity of the pore space is increased, until the efficiency ulti-
mately decreases for large heterogeneity. Resolving this conundrum
using the statistics of pore junctions, we offer broad insight into the
physics of flow-based transport in porous media.

Results
Non-linear relation between dispersion and flow heterogeneity
To investigate how structural properties of porousmediamorphology
determine the efficiency of transport, we perform microfluidic
experiments and numerical simulations. To this end, we focus on two-
dimensional model porous media where we modify the pore space
architecture in a controlled manner. Reduction to two-dimensional
media allows us to more precisely track the dispersion of fluorescent
solutes in experiments and demonstrate the effects of heterogeneity.
To manipulate the flow rate distribution, we vary the partitioning of
flows at pore junctions by altering the porous medium disorder35.
Circular obstacles are placed on a hexagonal lattice and are randomly
perturbed in their positions by up to a fraction χ of the obstacle radius:
the smaller the disorder parameter χ, the closer the porous medium is
to a perfect lattice.

A series of microfluidic chips with different levels of disorder is
created using templates of numerically generated obstacle positions;
the same designs are later used for flow simulations.We optimised the
chip inlets to generate a sharp front of fluorescent solute perpendi-
cular to the applied pressure gradient in an area before the flow enters
theporousmedium, see Fig. 1a and ‘Methods’. The initially sharp solute
front disperses as it propagates through the porous medium. The
observable dispersion patterns differ depending on the chip’s dis-
order. To capture the differences in transport dynamics, we quantify
the dispersion when the solute front reaches themiddle of the chip by
evaluating the concentration profile averaged perpendicular to the
axis of the applied pressure gradient. To estimate the efficiency of
transport, we quantify the dispersion by measuring the width of the

averaged concentration profile. We define the front width as the dis-
tance between 25% and 75% of the full saturation level, see Fig. 1b.
Strikingly, the efficiency of transport measured by the front width is a
non-monotonic function of the disorder, see Fig. 1c. The front width
surprisingly first decreases when introducing disorder among the
obstacles. The averaged concentration profile is sharpest at inter-
mediate disorder and only increases at high disorder, despite the
roughness of concentration isolines monotonically increasing with
disorder. This indicates that the most efficient transport is achieved at
intermediate disorders and not at minimal disorder, as could be
intuitively expected.

To corroborate our counter-intuitive experimental findings, we
perform numerical simulations of solute dispersion and recover the
experimentally observed non-monotonic behaviour of the front
width as a function of porous media disorder, see Fig. 1c. The dif-
ference between simulation and experiment for χ = 56% stems from
imprecision in the fabrication process of the chip for very narrow
pores, where obstacles are placed closer than a distance d≪ 10 μm.
To gain intuition of how disorder affects dispersion, we compare
front profiles obtained from simulations to front profiles obtained
frommicroscopy images, see Fig. 2a, b and ‘Methods’. While we find
clearly different dispersion patterns for different degrees of dis-
order, that qualitatively agree between experimental and simula-
tion results, it is unclear how these patterns emerge and what their
relevance for transport efficiency is. Here, simulations allow us to
connect dispersion dynamics with the underlying flow hetero-
geneity. For this, we zoom into the dispersion dynamics on the pore
level and distinguish pores with orientations parallel and perpen-
dicular to the pressure gradient. We find qualitatively different
dispersion dynamics for parallel and perpendicular pores, respec-
tively, that correlate with higher or lower flow of the underlying flow
field, as visualised by simulations, see Fig. 2b, c. Yet, how changes in
the flow field relate to a non-monotonic change in front width and
transport efficiency cannot be seen readily.

To connect flow field heterogeneity with transport efficiency, we
map out how the partitioning of flows into parallel versus perpendi-
cular pores changes as a function of porous medium disorder. Mea-
suring the flow statistics of every pore with all its possible consecutive
pores, wefinddifferentflowstatistics depending onwhetherwe look at
intermediate or highly disordered porous media, see Fig. 3a and Sup-
plementary Fig. S1.While theflowstatistics of highly disorderedporous
media have been investigated in depth33–35, we focus here on porous
media of low and intermediate disorder. Recall that we find the non-
monotonic dependency between dispersion front width and disorder
precisely in the range of low and intermediate disorder. In Fig. 3a, we
observe three distinct clusters of junction flow statistics emerging for
porous media of low and intermediate disorder. For our two-
dimensional porous media, all pore junctions only connect three
pores each. As a result, for low and intermediate disorder, pore junc-
tions are perfectly defined as two consecutive parallel high-flow pores
joiningwith aperpendicular low-flowpore. In Fig. 3a, the central cluster
along the diagonal I represents two consecutive parallel (high flow)
pores, while the off-diagonal clusters II and III represent a parallel pore
feeding into a consecutive perpendicular (low flow) pore or vice versa.

As the flow in a perpendicular pore follows from the flows in the
two parallel pores by fluid volume conservation, the central cluster I
comprises all information about the flow statistics of junctions. To
quantify how changes in junction flow statistics impact the non-
monotonic front dispersion dynamics at low and intermediate dis-
order, we analyse the central cluster along the diagonal as a multi-
variate Gaussian distribution valid up to a disorder of ~20%, see
Supplementary Fig. S2. The cluster’s covariance matrix eigenvectors
are independent of the degree of disorder, and therefore the square
root of the covariancematrix eigenvalues σ1,2 are representative of the
standard deviation in flow statistics around the constant average flow
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Q0, see Supplementary Fig. S1. Importantly, the standard deviations
σ1,2 both show monotonic behaviour, growing linearly with disorder χ
up to a disorder of 20%, see Fig. 3b.We verify the linear increase in the
standard deviation of the flow rates with increasing disorder in
experiments by particle image velocimetry, see Supplementary Fig. S7.
Note that the pore statistics can be extracted as the marginal dis-
tribution from the junction statistics. As such, the flow heterogeneity
in the pore space is also a monotonically increasing function of het-
erogeneity. Consequently, we find that the flow statistics alone are
insufficient to conclude on the efficiency of transport. With both the
pore and the junction flow statistics monotonically increasing with
disorder, the non-monotonic behaviour of the front width as a func-
tionof disorder cannot beunderstood intuitively. Tomake senseof the
non-monotonicity, we need to make a conceptual shift to understand
transport in termsof pore junctionunits, insteadof individualpores, as
the fundamental building block of porous media.

Pore junctions as the minimal unit describe transport
To date, analytical theories of transport in porous media are based on
transit time statistics through individual pores, as pioneered by
Saffman8,9. In this approach, the statistics of how long particles spend
time in individual pores is combined with the statistics of flow rates in
the pore space to conclude on the transport dynamics through the full
porous medium11,45,47,49. Yet these approaches neglect the coupling
between jumpdirection and transit time contributions caused by back
diffusion in pore bodies. Demonstrating that back diffusion and the

direct interaction between low and high-flow pores are crucial to
understanding transport efficiency, we perform a conceptual shift and
derive transit time statistics for pore junctions as the minimal unit for
transport dynamics through porous media. Specifically, we demon-
strate that physical intuition can be generated by focusing directly on
approximations ofmoments of the transit time insteadof first deriving
approximations for the transit time distribution and then recovering
moment approximations.

Here, we tile the entire porous medium by our minimal unit, a
junction block, which consists of two consecutive parallel pores
denoted {∥, in} and {∥, out}, respectively, joined with a perpendicular
pore {⊥}. By defining pore junctions, we combine the advantages of
pore space descriptions and pore bodies. We accurately capture the
interplay between pores with different flow rates in pore bodies.

The agreement of our numerical simulations with our experi-
mental data in Fig. 2 already confirms that transport dynamics are
successfully captured by Taylor dispersion in channel-like pores of
varying diameter connected to a planar network. Analytically, trans-
port through an individual pore i∈ {∥, in; ∥, out; ⊥} is given by an
advection–diffusion-equation:

∂ciðx, tÞ
∂t

= � veff,iðxÞ
∂ciðx, tÞ

∂x
+Deff,iðxÞ

∂2ciðx, tÞ
∂x2

, ð1Þ

where the effective transport velocity veff(x) and diffusion Deff(x)
account for varying pore diameter and Taylor dispersion32,62 and ci is

Fig. 1 | Pore-space heterogeneity affects transport dynamics. a Experimental
setup. A two-dimensional porousmedium is constructed inside amicrofluidic chip.
The effect of pore space heterogeneity on transport dynamics is investigated as a
fluorescent solute traverses the chip. The inlet design is optimised to create initially
sharp fronts. Parallel pores, perpendicular pores, andpore junctions aredepicted in
the cartoon to the right. b Measurement of the dispersive front width. Cartoon
explaining the front width measures employed, see also ‘Methods’. The con-
centration profiles are averaged perpendicular to the pressure axis. The deviation
from a step function measures the efficiency of transport. The distance between
relative solute concentrations of 25% and 75% is the experimental measure for the
front width. Each experimental run is corrected for an offset caused by diffusive
spreading in the tubing. The average offset is added as a constant tomatchwith the

order of magnitude of visually obtained front widths in microscopy images.
c Change of the dispersive front width with disorder in simulation and experiment.
The dispersive front width is measured as a function of disorder in experiments
(rhomb) and simulation (circle) for Pe∥ ≈ 30. Error bars show the standard devia-
tions computed over a sample size of n = 6 for the simulation and n = 6 for the
experimental data points χ = 1%, 11%, 16% and n = 5 for χ = 6%, 26%, 56%. The front
width is evaluated when a relative solute concentration of 50% reaches the middle
of the porous medium. The analytically derived functional form of Eq. (3) captures
the non-monotonic dependency of the front width up to a disorder of χ ≈ 20%, as
demonstrated by afit over the simulationdatapoints in the range χ∈ [1%, 20%]with
R2 = 0.97, see also supplemental theory sections 1.7 and 1.8. The non-monotonicity
can be explained using pore junction statistics, but not by pore space statistics.
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the pore cross-sectional averaged concentration. To predict transport
dynamics through a junction block for a given flow, we determine
exact expressions for the mean first passage time to exit the junction
block via the outgoing parallel porek,out or the perpendicular pore? in

the spirit of ref. 63. To this end, we solve the pore junction geometry
explicitly in the temporal Laplace space, see supplemental theory
section 1.4. The algebraic solutions for the Laplace transformed
concentrations determine directly the statisticalmoments of themean
first passage time to exit through the parallel outflow or the
perpendicular pore. From these, we conclude on the variance of the
transit time through a junction block, see supplemental theory
section 1.5. In particular, from the ratio of probabilities to exit through
the parallel versus the perpendicular pore, we conclude that transport
is primarily governed by advection in parallel pores. As a consequence,
contributions of the parallel outflow pore are dominant for both the
total mean and variance of the transit time through a pore junction.
Importantly, we take from this analysis, that traversing a pore junction
can be interpreted as a stochastic process on the microscopic level of
connected pores, whose statistical moments we can fully determine if
the flow splitting within the junction is given, i.e. {Q∥,in,Q∥,out}.

Yet, as different pore junctions have different flow splitting, an
additional stochastic contribution from sampling different pore junc-
tions is superimposed for traversing across an entire porous medium.
The impact of the superposition of two stochastic contributions
stemming fromdifferent spatial scales on the variance in travel times is
captured by the law of total variance,

Var½Tk,out�=Ef ½Varp½Tk,out∣fQk,in,Qk,outg��
+Varf ½Ep½Tk,out∣fQk,in,Qk,outg��:

ð2Þ

Here, the superscript f refers to the statistics of flow splitting in pore
junctions, and the superscriptp refers to transit time statistics through
a pore junction unit. Note that Ep[T∥,out∣{Q∥,in,Q∥,out}] and Varp[T∥,out∣{-
Q∥,in,Q∥,out}] follow directly as algebraic expressions from the first
passage time through a junction block. Importantly, we understand
these two expressions as functions of the random variables {Q∥,in,
Q∥,out}. This allows us to link the pore junction transit time statistics
with flow statistics. For low and intermediate disorder, we can account
for the statistics of flow splitting in pore junctions explicitly. In these
disorder regimes, the flow distribution is a multivariate Gaussian
centred around the average flow Q0, see Fig. 3b. Furthermore, we
found its variance to be growing linearlywith disorder, σ1 = α1χ, σ2 = α2χ
along the axes q1 = (Q∥,in +Q∥,out)/2Q0 and q2 = (Q∥,in −Q∥,out)/2Q0.

Fig. 3 | Flow statistics of porous media up to intermediate disorder are cap-
tured by Gaussian statistics. a Flow statistics of consecutive pores. The statistics
of flow in consecutive pores for low disorder (χ = 1%) and intermediate disorder
(χ = 7%) are plotted, defining the statistics of flow splitting at junctions. Flow sta-
tistics for porousmedia with a high degree of disorder are fundamentally different,
see Supplementary Fig. S1. Q0 denotes the average flow rate in parallel high-flow
pores evaluated at χ =0%. For low and intermediate degrees of disorder three
clusters are identified. Cluster I, containing information about the flow in con-
secutive parallel high-flowpores, gives the full information about the flow statistics
at junctions. Computing the covariance matrix, we find that cluster I is well
approximated by multivariate Gaussian statistics. The eigenvectors q1, q2 are

independent of the degree of disorder (red arrows). The error ellipsoids in red are
drawn at 0.5σ, 1σ, 1.5σ and 2σ. The flow statistics are well-captured by Gaussian
statistics up to a disorder of 20%, see Supplementary Fig. S2.b Effect of disorder on
flow statistics. The eigenvalues of the cluster I are plotted against the disorder of
the porous media. Error bars show the standard deviation taken over 5 virtual
replica. Both σ1 and σ2 increase initially linearlywith disorder χ (dotted line). A linear
regressionwasperformedover the simulationdata points in the range χ∈ [2%, 22%]
yielding a goodness of fit of R2 = 0.99 with slopem1 = 3.1 andm2 = 1.4 for σ1 and σ2,
respectively. An analogous analysis showing a linear increase in the standard
deviation of the flow rates obtained from experiments by particle image veloci-
metry is shown in Supplementary Fig. S7.

Fig. 2 | Dispersion dynamics differ qualitatively with disorder. a Visualisation of
transport dynamics in experiments. The transport dynamics of a fluorescent solute
are visualised for porous media with varying pore-space heterogeneity. Distinct
transport characteristics emerge for different degrees of pore-space heterogeneity
for a Péclet number of Pe∥ ≈ 30. Arrowheads highlight analogous dispersion char-
acteristics between experiment and simulation. For χ = 1%, these highlight the
slower fill-up of the perpendicular pores, compared to adjacent parallel pores. For
χ = 16% the arrowheads point out the varying transport dynamics between adjacent
lanes of parallel pores, and at χ = 56% they indicate extended regions of slower
filling.bVisualisationof transport dynamics in simulations. The transport dynamics
are contrasted to numerical simulations. Distinct transport characteristics for dif-
ferent degrees of pore-space heterogeneity are qualitatively recovered for a Péclet
number of Pe∥ ≈ 30andhighlightedwith arrowheads. cVisualisation offlowprofiles
in simulations. For the simulation, the transport dynamics and the underlying flow
profiles are compared. With increasing disorder, the heterogeneity in the flow
profiles is increased. The normalisation U0 denotes the average flow velocity in
parallel pores, measured for a disorder of χ =0%.
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Given these closed expressions for the flow statistics, we approximate
the mean and variance of the transit time by a series expansion in the
deviation from the average flow Q0, see supplemental theory sec-
tion 1.6. Importantly, we can calculate all expressions up to any desired
order explicitly. We collect terms respective to their order in χk and
define the prefactors Λk. We obtain a polynomial approximation on
how the total variance of the first passage time depends on the het-
erogeneity of flows in the porous medium. Due to the Gaussian sta-
tistics of the flow rate splitting, odd powers vanish, Λ1 = 0 and Λ3 = 0.
We can directly assess Λ0 > 0, Λ2≪0, and Λ4 > 0 for high Péclet num-
bers Pe⊥≫ 1, see supplemental theory section 1.6. Thus, the impact of
porous media disorder χ on the variance of the first passage time
across a porous medium yields

Var½Tk,out� ≈ ∣Λ0∣� ∣Λ2∣χ
2 + ∣Λ4∣χ

4: ð3Þ

We predict for large Péclet numbers the variance of the first passage
time through an entire porous medium to initially decrease with
increasing disorder and to increase only for large disorders. Albeit not
mathematically speaking an exact mapping, the variance of the first
passage time is a direct predictor of the width of the dispersive front
and the polynomial approximation shows an excellent collapse onto
the data in Fig. 1c, see also supplemental theory section 1.8. Matching
the Péclet number Pe∥ ≈ 30 and approximating Varp[T∥,out∣{Q∥,in,
Q∥,out}] and Ep[T∥,out∣{Q∥,in,Q∥,out}], we correctly predict the order of
magnitude of the initial non-monotonicity with a dip of χtmin=χ

t
0 ≈ 80%

at a disorder of χtmin = 19:5% in agreement with the fit to the data
yielding χfmin=χ

f
0 ≈ 83:5% and χtmin = 15%, see supplemental theory

section 1.7. Analogous analysis for lowPéclet number, Pe⊥≪ 1, predicts
the initial decrease in variance with disorder to vanish, see supple-
mental theory sections 1.7, 1.8 and Supplementary Fig. S5. This is in
agreement with extended simulations, see Fig. 4.

Importantly, our analysis offers the possibility to understand the
physical origin of the initial sharpening of the dispersive front. We find
that the variance a particle picks up from moving through a pore
junction is on average reduced as the porous media’s disorder is
increased. Specifically, the variance in the first passage time of tra-
versing a junction block is maximal if there is no flow in the perpen-
dicular pore, but decreases both if there is negative or positive flow in
the perpendicular pore. The low flow velocities in perpendicular pores

allow long diffusive meanderings of particles in the finite perpendi-
cular pores before entering any of the neighbouring parallel pores. In
particular, particles might take exploration tours in the low flow per-
pendicular pores and return to the junction splitting point instead of
exiting the pore on the opposite side; this is an effect that cannot be
accounted for, if back diffusion between pore bodies is neglected.
Increasing the flow in perpendicular pores reduces the probability of
initiating exploration tours through perpendicular pores and reduces
the average transition time. To confirm this explanation more gen-
erally, we also ran simulations on a square lattice, for whichwe predict
the physical intuition explained above to remain valid. Comfortingly,
we also observe for the square topology a reduction of the dispersive
front, see Supplementary Fig. S8. Overall, we demonstrated that
transport statistics in the junction space is a powerful tool to generate
intuitive insight on fluid flow-based transport in porous media. The
presented concept can easily be modified and applied to a variety of
morphologies and different types of porous media.

Discussion
Investigating how porous media morphology optimises transport
efficiency, we discover at first sight counter-intuitive transport
characteristics that arise from the interplay of advection and diffu-
sion in the heterogeneous flow fields of porous media. Performing a
conceptual shift by considering transit time statistics on the level of
pore junctions instead of individual pores solves the conundrum of
our experimental data. Algebraically deriving the transport statistics
of the junction space allows us to connect microscopic dynamics
with macroscopic transport properties through entire porous media.
This way, we link changes in the morphology of porous media with
changes in the transport dynamics. Specifically, we can incorporate
the heterogeneity of flow fields effectively into a macroscopic
description of transport and asses the efficiency of transport through
the whole porous medium. While this approach is especially suited
for low to intermediate disorder χ < 30%, see Fig. 1c, the prediction at
higher disorder values fails, as deviations from Gaussian flow rate
profiles arise, which are not captured by our expansion, see Fig. 3 and
Supplementary Fig. S9. The deviations from Gaussian flow rate pro-
files indicate that for high disorder, χ > 30%, the analysis needs to be
adjusted to include correlations between junction units. In this
context, the analysis of the variation in the dispersive front

Fig. 4 | Non-monotonic dependence between dispersive front width and dis-
order vanishes for small Péclet numbers. a Illustration on how dispersion
dynamics depend on advective transport. Simulation snapshots visualising how the
sharpening of the dispersive front width relies on the transportmode of advection.
A sharpening of the front width is only observed for large Péclet numbers. Porous
media disorder has only little effect for low Péclet numbers, where transport in all
pores is dominated by diffusion. b Evaluation of the effect of disorder and Péclet
number on disperive front width. The effect of disorder and Péclet number on the

dispersive front width are analysed in simulations. The black dotted lines indicates
the position of minimal front width for varying Péclet number. Grey dotted lines
indicate the Péclet numbers used in (a). In the simulation the Péclet number was
altered by varying the molecular diffusivity k. In agreement with the theoretical
prediction, the non-monotonicity is only apparent for high Péclet numbers Pe≫ 1.
Also, the disorder showing the sharpest dispersive front for a respective Péclet
number increases with increasing disorder, which is in qualitative agreement with
the analytical argument.
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perpendicular to the pressure axis could help to disentangle corre-
lations among pore junctions extending beyond nearest-neighbour
correlations.

In our work, we present how introducing disorder increases the
efficiency of transport. Intriguingly, a constructive role of noise in gen-
eral arises in the broad context of transport processes64–68, with noise
increasing transport efficiency in a seemingly unrelated system54, hinting
to a deeper connection and strengthening the importance of comparing
transport dynamics in vastly different systems to gain new perspectives
on the constructive role of noise in transport dynamics. In conclusion,
for the rich class of transport processes in porousmedia, the conceptual
shift to pore junctions as the building blocks of porous media offers a
change in paradigm for the multitude of applications of porous media
from oil recovery, chemical reactors, and biological systems to the
design of novel materials such as self-organised porous media and soft
robotics.

Methods
Experimental methods
Microfluidic micromodels were produced following soft lithography
methods in line with those detailed elsewhere15. The porous media
were designed using circular obstacles of radius r = 60μm on a hex-
agonal grid of lattice spacing a = 162μm, so that the packing fraction
was0.5. Each obstacle was displaced from its grid location in a random
direction by a distance chosen from a uniform random distribution up
to a maximum of χr, with the constraint of a 10μmminimum distance
between obstacles.We use a chrome-quartz photomask and a negative
photosresist (SU8 3025) to manufacture reusable templates in six
designs with χ between 0.01 and 0.56. Poly(dimethylsiloxane) (PDMS)
is pouredover these templates, degassedunder vacuum, and cured for
2 h at 75 °C, then the solidified layer is cut off and inlet/outlet holes are
punched. The imprinted PDMS and a glass slide are primed in an
oxygen plasma and adhered to one another, forming a microfluidic
chip containing solid pillars as obstacles, separated by open channels
with a thickness of 60 ± 3μm. For each experiment, a chip was filled
with deionisedwater, sonicated under flow to detach any air bubbles69,
and then fluorescein-dyed water was fed into the inlet of the water-
saturated chip from a syringe pump. For fluorescent imaging, filter
cube 38 HE (excitation 470/40 nm, emission 525/50nm (wavelength/
bandwidth)) was used. We used flourescein at a concentration of
150μM, which is within the linear range of a calibration curve made of
pixel-intensity vs. concentration.

Numerical methods
To simulate the spread of a diffusive solute in a porous medium, a
Crank-Nicolson routinewas employed70. To this end, the porousmedia
used for the simulation followed the same design as the microfluidic
micromodels: circular obstacles on a hexagonal grid were randomly
displaced from their grid locations, as detailed in the ‘Experimental
methods’. The porous medium was interpreted as a network of pores
through which both advective and diffusive transport were con-
sidered. The simulation routine involved three major steps. First, the
pores’ network structures were extracted by skeletonization of the
designs used for the microfluidic experiments. Along the extracted
skeleton, the minimal distance to the nearest obstacle wall was com-
puted, to extract the varying radius along the pores. The hydraulic
resistance along each pore was computed under the assumption of a
slowly varying pore radius. Next, Kirchhoff’s circuit law was employed,
conserving fluid volume at every network node to compute the flow
profile in the network. At the left and right sides of the network, inlet
and outlet pores were identified. A constant pressure drop was
imposed across the medium, by setting the pressure Pin at every inlet
pore and the pressure Pout at every outlet pore. Flow rates in pores
were computed by a matrix inversion solving Kirchhoff’s circuit laws.
The varying flow velocity along the pores was computed by dividing

the flow rate through a pore by the cross-section varying along the
pore and a Poiseuille profile was imposed. In a third step, the network
topology and the flow profile were used to numerically integrate the
advection–diffusion equation along individual pores using a Crank-
Nicolson integration routine. To minimise numerical artifacts, pores
were approximated as tubes with varying circular cross-sections. For
the Crank-Nicolson integration routine, the dynamics are reduced to
the spread along the skeleton and an effective Taylor dispersion
accounting for varying boundary conditions is employed32. At junction
points, merging and splitting conditions were implemented analogous
to the Crank-Nicolson routine along individual tubes70. To minimise
boundary effects at the inlet and outlet of the porous medium, inlet
pores and outlet pores were identified and then artificially elongated
by a factor of four. This is in contrast to the experimental routine,
where an open area before and after the porous medium was created,
which would cause numerical artifacts during skeletonization. A fixed
concentration, C0 = 1, was set for inlet pores and at outlet pores an
open outflow condition was implemented, which estimated transport
by advection and diffusion across the last spatial simulation point. To
simulate cases of different Péclet numbers, the diffusion constant was
altered instead of the flow velocity, as this granted better numerical
stability. Finally, the simulation was validated against analytical solu-
tions in simple network geometries.

Particle image velocimetry (PIV)
Flow velocity fields were extracted by particle imaging velocimetry
(PIV). Fluorescent 1μm polystyrene microspheres (FluoSpheres,
ThermoFisher Scientific) were used as tracers, diluted to a 1:3750
volume ratio and pumped through the microfluidic chips at 100μl/h.
Fluorescence imagingwas done at 18.18 fps with a 5ms exposure and a
63 HE filter cube (excitation 572/25 nm, emission 629/62 nm (wave-
length/bandwidth)) at 2048× 2048 pixel resolution; typical flow
speedswere 1–10pixels/frame. Amedian imagemade fromeach image
sequencewas used for background subtraction. A white-light image of
each experimental configuration was used to generate a mask of the
obstacle locations.Weused PIVLab71 to analyse themedian-subtracted,
masked image sequences, using default settings and successive inter-
rogation areas of 64/32/16/8 pixels. The reported velocity maps are
frame averaged over sequences of ~300 frames.

Having extracted the velocity vectors from the PIV analysis, flow
rates were extracted using methods adapted from Alim et al.35. To this
end, we took the flow velocity vectors on the skeleton of the pore
space, and found the component of these flows projected along the
skeleton. The flow rates in each pore were computed by dividing the
projected vectors by the cross-sectional area varying along the pores.
To avoid errors close to pore junctions, only the center third of each
pore was considered. The median flow rate in each pore was used as a
representative value, to reduce the sensitivity of the analysis to artifi-
cial outliers. By mapping flow rates to the skeleton, parallel and per-
pendicular pores are distinguishable.

Estimation of the Péclet number
The Péclet number is defined as ratio of the timescale of advection to
the timescale of diffusion, Pe = τadv/τdif, and characterises which
mode of transport is dominant in a given setting. The advective
timescale is computed using the characteristic flow velocity U over a
characteristic length scale l as τadv =U/l, while the diffusive timescale
is estimated over the same length scale with τdif =D/l2, resulting in
Pe =Ul/D. However, spatial heterogeneity leaves ambiguity in the
definition of the characteristic velocity. As such, we define two dif-
ferent Péclet numbers to effectively capture the essential transport
dynamics in the porous medium. These are the parallel and per-
pendicular Péclet numbers, Pe∥ and Pe⊥, which relate to the flow
statistics parallel and perpendicular to the pressure axis, respec-
tively. Specifically, for Pe∥ the average flow velocity parallel to the
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pressure axis is taken as the characteristic flow velocity while Pe⊥
considers the flow perpendicular to the pressure axis. In both cases,
the same diffusivity D and the characteristic length scale of a (dif-
fusive) pore are considered. While Pe∥ is accessible through experi-
ments, Pe⊥ gives a more insightful estimate in line with the
theoretical considerations. If detailed knowledge of the flow statis-
tics is available, both Péclet numbers can be converted into each
other. We use porous media with an intermediate degree of disorder
as a benchmark to estimate Pe⊥. Specifically, using the numerically
computed flow fields, we find that Pe∥/Pe⊥ ≈ 5.

For the microfluidic experiments, the parallel Péclet number is
estimated using the literature value72 of D = 4.25(1) × 10−6 cm2 s−1, and
U ≈ 350μms−1 by measuring the propagation of the dispersive front
between two recorded frames. As a characteristic length scale, the size
of a diffusive pocket was estimated as l ≈ 40μm. Here, rather than the
lattice spacing between the pore centres, the average length of the
pore throats was estimated. For this, from the pore length, which
estimates half the lattice spacing, the average perpendicular pore
diameter at junction points was subtracted. This yields a Péclet num-
ber of Pe∥ ≈ 30 for the experiments.

Measurement of the dispersive front width
While Fig. 2 characterises the spatial profiles of both the numerical
simulations and the experimental data, the form of the data is differ-
ent. To extract the maximum information from both the simulation
and the experiment, different estimates of the dispersive front were
employed, yet both metrics have the same functional dependency on
the effective diffusion constant (i.e. as measures of dispersion), see
also supplemental theory section 1.8.

Numerical simulation. Detailed concentration values along the indi-
vidual pores are available for the numerical simulation. To compute the
width of the dispersive front, a projection of these data onto the pres-
sure axis is performed. For this, the mean concentrations of individual
pores, weighted by their pore cross-sectional areas, are projected onto
the pressure axis, creating an averaged profile. To avoid artifacts from
the boundary walls, only the middle half of the porous medium was
considered for the analysis. To compare simulation runs with different
degrees of disorder, profiles were evaluated at the time when the point
mid-way between the inflow and outflow tubes xe was first reached by
half the saturation concentration, C0/2, of the averaged profile.

As a measure of the width of the dispersive front the deviation
from a step function profile was quantified. After normalisation by C0,
the first half of the front profile, C(x)∀ x < xe, was flipped to
�CðxÞ= 1� CðxÞ, creating a new profile that is sharply peaked around a
maximumof �CðxeÞ= 1=2. As ameasureof the frontwidth, the integral I �C
below the modified profile �CðxÞ was evaluated, which scales pro-
portionally to the root of an effective diffusion constant, I �C /

ffiffiffiffiffiffiffiffi

Deff

p

.

Experimental data. While evaluating the dispersive front width from
experimental data, care was taken tominimise the effects of noise on
the signal. The analysis was conducted in matlab. An image taken
prior to injecting any dye was used for background subtraction,
which was applied to all later recorded images. To correct for non-
homogeneous illumination, the fluorescence images were then nor-
malised by the background-corrected, last recorded frame, corre-
sponding to full saturation. A mask of pillar locations was made by
thresholding the last recorded frame and positioning circular mask
elements at the centroids of the obstacles’ silhouettes. The masked
pillars were assigned with the scalar representation of not a number,
nan. As with the simulations, to avoid boundary effects, only a
4.3mm wide window around the middle axis of the chip was con-
sidered. Images were filtered with a Gaussian filter of width 3 pixels,
where nan assigned values were excluded from the analysis, by using
nanconv73. A projected intensity profile was computed from the

normalised, cropped, and filtered images as the mean value per-
pendicular to the pressure axis, excluding the masked obstacles. The
resulting profile varies between the relative intensities of 0 (undyed)
and 1 (fully dyed).

The integral I �C gives a precise characterisation of the front width
for the numerical simulation, but is sensitive to fluctuations or dis-
tortions in the tails of the profile, including the weak, but observable,
effects of bleaching in the experiments. As such, experimentally the
width of the dispersive front is directly evaluated from the length, w,
over which the normalised intensity profile is between 0.25 and 0.75.
As an infinitely sharp step of the initial concentration is not realisable
due to diffusive spreading in the tubing before entering the chip, we
record the equivalent front width, w0, when the dye front first enters
the obstacle area. The front width is then characterised 15 s later, to
ensure consistency across experiments, by the measurement of wc =
(w −w0). In a final step, the average offset 〈w0〉 is added as a con-
stant offset to each measurement point to match the order of mag-
nitude of the observed front width in the microscopy images. While
this method is designed to minimise the effects of numerical artifacts,
we demonstrate that the non-monotonic dependency of wc on χ is
robust to changes in the choice of evaluation parameters, see Sup-
plementary Fig. S6.

Data availability
The collected experimental data, simulation results, and source data
underlying Fig. 1c and Fig. 3b are available in themediaTUM repository
under https://doi.org/10.14459/2022MP1684458.

Code availability
A Mathematica notebook allowing the tractability of calculations,
code for generation of the porous media design and the integration
routine to simulate dispersive spread in porous media are deposited
also in the mediaTUM repository under https://doi.org/10.14459/
2022MP1684458. Plotting routines and further code snippets are
available from the corresponding author upon reasonable request.
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