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A dynamic self-organized morphology is the hallmark of network-shaped

organisms like slime moulds and fungi. Organisms continuously reorganize

their flexible, undifferentiated body plans to forage for food. Among these

organisms the slime mould Physarum polycephalum has emerged as a model

to investigate how an organism can self-organize their extensive networks

and act as a coordinated whole. Cytoplasmic fluid flows flowing through

the tubular networks have been identified as the key driver of morphological

dynamics. Inquiring how fluid flows can shape living matter from small to

large scales opens up many new avenues for research.

This article is part of the theme issue ‘Self-organization in cell biology’.
1. Introduction
Many organisms, including a broad range of species of slime moulds and fungi,

grow and forage as a single large network. Networks change their morphology

over and over again during growth and migration to locate food in a patchy

environment [1,2] (see also figure 1a). Moreover, network morphology adapts in

response to newly acquired food sources, even connecting food sources in an

efficient and robust manner [3]. The striking similarity of the morphological

dynamics in foraging fungi and slime moulds is even more surprising if one

takes into account that slime moulds and fungi are genetically distinct, with

slime moulds being genetically closer to animals than fungi. It is, therefore,

likely that it is not biological make-up but the physics of fluid flows within the tub-

ular networks that are critical to the self-organization of network morphology

across an individual. Both kinds of living, adaptive networks exhibit oscillatory,

long-ranged fluid flows [4–6]. Here, the syncytial plasmodia of the slime mould

Physarum polycephalum emerged as a model system to understand the role of

flows in coordinating morphology. Fluid flows in this organism are highly coordi-

nated, driving intracellular transport on short time scales but also migration and

likely morphological self-organization at long time scales.
2. Cytoplasmic flows organized in a peristaltic wave
In P. polycephalum the fluid cytoplasm within the tubular network streams

forth and back in a shuttle flow [6,7]. Network sizes are macroscopic ranging

from about 500mm to 0.5 m—experiments are typically conducted on specimens

of up to a few centimetres in size. Flows generally exhibit a Poiseuille profile

[6,8] with deviations likely in smaller tubes [9]. Flow is dominated by small

Reynolds number Re ¼ 2UR/n � 0.002 and small Womersley number

a ¼ R
ffiffiffiffiffiffiffiffi
v=n

p
� 0:004, based on a representative tube radius of R ¼ 50mm, a flow

velocity reaching up to U ¼ 1 mm s21 [6], a kinematic viscosity of cytoplasm n ¼

6.4 � 1026 m2 s21 [10] and an oscillation frequency of v ¼ 0.05 Hz. The cytoplasm

is enclosed by gel-like walls that are lined with an actin cortex [11,12]. Actin

organizes in circumferential fibrils that contract periodically [13] and drive the cyto-

plasms’ shuttle flow. Contrary to long-lasting speculations about localized pumps

driving pressure difference, the common understanding now is that flows arise

through network-wide, self-organized contractions of the actin cortex [14,15].

The shuttling cytoplasm itself is very rich in actin. In 1 mm-sized cytoplasm

extract droplets, so-called protoplasmic droplets, the actin cortex and the
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Figure 1. Network morphology and peristaltic wave driving long-ranged cytoplasmic flows in the plasmodial slime mould P. polycephalum. (a) Self-organization of the
network morphology over the course of 12.5 h. An initially well-reticulated network migrates to the left thereby retracting connections and altering tube radius hierarchy.
Scale bar, 5 mm. (b) Bright-field microscopy image of P. polycephalum network trimmed to a rectangular shape. Scale bar, 2 mm. (c) Analysis of actin-cytoskeleton-driven
contractions of tube walls in (b) reveal phases of contractions to be patterned in a roughly linear gradient. The wavelength of this peristaltic phase pattern on a network
matches the organism size. (d) Simulation results of the spread of particles (copper colour) due to the streaming of fluid flow driven by the peristaltic contractions.
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contractions self-organize over time, showing first irregular

contraction patterns and later highly coordinated spatio-

temporal patterns including standing, travelling and spiral

waves [16–19]. Similar dynamics and patterns can be repro-

duced in models by describing the protoplasmic droplets by

two phases of a viscoelastic solid phase representing the cytos-

keleton, interpenetrated by a second fluid phase representing

the cytosol and coupling both phases by a soluble molecule

that activates tension in the solid phase [20,21]. Even on the

much larger scale of an entire tubular network contractions

are also highly coordinated, forming a peristaltic wave span-

ning specimens of at least 2 cm in size [14,22] (figure 1b–c).

While the contraction period only increases moderately with

network size [23,24], the wavelength of the peristaltic wave

matches the organism size spanning two orders of magni-

tude [14]. It is fascinating to investigate how this scaling

can arise. Given the success of mechanochemical models

for protoplasmic droplets it is likely that the organism-

spanning peristaltic wave is also a result of mechanochemical

patterning, which could nicely complement our emerging

understanding of this novel patterning mechanism wide-

spread in biological systems [25,26]. From a fluid mechanics

point a view, a peristaltic wave matching organism size

induces the highest flow velocities throughout a network. As

flows change with organism morphology, they are likely not

only important for organism homoeostasis but also for the

coordination of morphological adaptation itself.
3. Effective intracellular transport by
oscillatory flow

Peristalsis is a common mechanism in biological systems, creat-

ing oscillatory flow and pumping fluid along a tube [27–30]. In
P. polycephalum, the tubular network can be considered to be of

fixed volume on the time scales of tens of contraction periods.

Therefore, net fluid transport is not relevant on these short

time scales [14,31]. Yet, creating shuttle flows by a peristaltic

wave of contractions is a simple but powerful mechanism

to increase the spread of any particles, like metabolites or

signalling molecules, within this closed network. Rare measure-

ments show organism-wide, approximately 2 cm, transport

of particles within half a contraction period [22] out-competing

diffusive spread that would have travelled only 0.25 mm in that

time frame. Because of the oscillatory nature of flow, particles

flow mainly back to their initial site after a whole period. But

the peristaltic flow also increases the effective diffusion

k! kþU2R2=48k according to Taylor dispersion in long slen-

der tubes [32,33], also applicable to contractile tubes [34,35].

Here, k denotes the bare molecular diffusivity. Rapid diffusion

across the tiny tube cross-sections allows particles to transition

between fast and slow streamlines of the Poiseuille profile

rapidly increasing their dispersion along the tube by an order

of magnitude (figure 1d). The adjacency of large and small

tubes and therefore different flow velocities in a slime mould

network make it a hard task to theoretically map out how far

particles can spread [36]. One successful strategy is to map out

an effective dispersion [37,38], which unveils, for example,

that particle spread is increased by pruning/coarsening of the

network when P. polycephalum is left to starve [38]. This already

provides a glimpse of the challenging question on how network

morphology impacts network-wide transport [22]. Is mor-

phology geared to optimizing dispersion? If so, how does it

evolve towards an optimized morphology? Transport by fluid

flow seems to lie at the basis of network self-organization

since advected signalling molecules may propagate information

about the acquisition of a food source throughout the network

by hijacking fluid flows [39]. Here, signalling molecules
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advected by fluid flow directly increase contraction activity.

Further, flow is necessary to synchronize and coordinate con-

tractions [40–42]. It is, therefore, likely that flows play a

crucial role in coordinating contractions over space and time.
lsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170112
4. Cell migration by pumping of peristaltic wave
Cytoplasmic flows form the basis of fast locomotion of very

different kinds of amoeba [43–46]. Flows arise by local expan-

sion of the actin cortex and subsequent myosin-dependent

contraction [44]. Flows and contractility underlying cell

migration are well accessible in the amoeboid plasmodia of

P. polycephalum. Plasmodia of 100–500 mm length adopt an

amoeboid shape migrating rapidly [47,48] by net fluid trans-

port generated by a contractile peristaltic wave and cortex

expansion at the front [49]. Changes in contraction pattern

affect locomotion velocity [50]. Plasmodia that exceed

�500 mm form a full network structure often including

multiple migration fronts. Over the peristaltic cycle, a front

advances and retracts asymmetrically leading to net advance-

ment at long time scales [51]. As networks grow they move

faster [23]. When confined to lanes, migration velocity scales

linearly with maximal plasmodium height, reaching loco-

motion speeds of up to v ¼ 0.4 mm s21 [23]. Reorientation of

migration direction, for example, towards a food source, is

associated with a redirection of the peristaltic wave direction

to that site [39] further substantiating that migration is

governed by fluid flows on long time scales. Given that signal-

ling molecules are advected by fluid flows affecting actin

cortex dynamics [39], it seems possible that flows play an

important role in the navigation of organisms, acting, for

example, during chemotaxis.
5. Morphological changes triggered by
cytoplasmic flows

Fluid flows not only transport particles and fluid mass but also

exert forces themselves that may induce long-term changes to
morphology. Forces may directly feed back onto biochemical

reactions triggering complex spatio-temporal dynamics due

to this mechanochemical coupling as currently more and

more observed in morphogenetic processes [25,26]. Even with-

out the ability to pin down a specific feedback on chemical

reactions the influence of forces generated by flow can be

investigated on a coarse-grained level. For example, in

animal vasculature, it is observed that tube diameters grow

with increased flow rate regulating shear force to a balanced

level [52]. This observation inspired the idea that fluid shear

force induces morphological changes in vasculature, a concept

also successfully used in models of P. polycephalum dynamics

[22]. Further support is the success of Murray’s Law, particu-

larly in plant and animal vasculature [53] which predicts the

ratio of tube diameters at a network node under the assump-

tion of conserved shear force. Murray’s Law is also

consistent with minimizing dissipation, inspiring theoretical

work on optimal network architectures [54–56]. Given that

P. polycephalum grows its almost transparent tubes in a

planar network, testing principles such as Murray’s Law [57]

and, in general, relating morphological dynamics to flow

properties is very feasible. In particular, the adaptability of

the network morphology makes it a very suitable system to

explore how well certain properties like dissipation, robust-

ness [3] or transport capabilities [58,59] are optimized by

living organisms. Equally, as flows are globally coupled

throughout the network, there is considerable additional

complexity in this system. Indeed, it might well be that pre-

cisely this added complexity due to the coupling is the key

to have simple mechanisms based on fluid flow give rise to

the complex dynamics of self-organization of morphology

we observe.
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