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Life and functioning of higher organisms depends on the continuous supply

of metabolites to tissues and organs. What are the requirements on the trans-

port network pervading a tissue to provide a uniform supply of nutrients,

minerals or hormones? To theoretically answer this question, we present

an analytical scaling argument and numerical simulations on how flow

dynamics and network architecture control active spread and uniform

supply of metabolites by studying the example of xylem vessels in plants.

We identify the fluid inflow rate as the key factor for uniform supply.

While at low inflow rates metabolites are already exhausted close to flow

inlets, too high inflow flushes metabolites through the network and deprives

tissue close to inlets of supply. In between these two regimes, there exists an

optimal inflow rate that yields a uniform supply of metabolites. We deter-

mine this optimal inflow analytically in quantitative agreement with

numerical results. Optimizing network architecture by reducing the

supply variance over all network tubes, we identify patterns of tube dilation

or contraction that compensate sub-optimal supply for the case of too low or

too high inflow rate.
1. Introduction
Transport processes organized in network structures are ubiquitous in our life,

from road traffic [1] and power networks [2] to river estuaries [3] and vascular

systems of extended organisms [4,5]. In particular, fluid flow-driven transport

through networks underlies many technological applications like fuel cells

[6], micro-fluidic devices [7] or filtration systems [8] and their medical appli-

cations [9]. Most significantly, all higher forms of life rely on fluid flow-based

transport networks to provide their tissues with metabolites like nutrients or

minerals, as there are the circulatory system of animals [10], the plant xylem

vascular system [11] and the hyphae networks of fungi [12–14]. Within a

tissue, each cell needs to be provided with the same minimal amount of metab-

olites. How does a transport network need to be set up to make sure that

metabolites arrive uniformly at each cell within a tissue? Here, we theoretically

investigate the requirements on flow and network architecture for uniform

supply.

On the level of inter-vascular tissue, models for minimal supply due to

metabolite uptake and metabolite diffusion within the tissue date back

100 years to Krogh’s model [15]. Yet, Krogh assumes that metabolites are pro-

vided by the vasculature at a constant rate at all vessel walls [16]. This strong

simplification neglects that vascular network architecture and resulting asym-

metries in flow-based transport give rise to large variations in metabolite

availability within the network. On the level of the vascular network itself,

studies mapping out variations in metabolite availability are scarce [17–19].

Insight into what controls uniform metabolite supply at the vasculature level

is missing. Instead research has focused on network flow and not transport

properties identifying scaling relationships regarding the network’s fluid

dynamics [20–27]. Another branch of theoretical models for vascular systems
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Table 1. Nomenclature.

R tube radius

‘ tube length

L network length

N number of tubes in the network

Q fluid flow rate

U fluid flow velocity

C metabolite concentration

J metabolite flux

k molecular diffusivity of metabolite

n absorption rate of metabolite

g absorption parameter; g ¼ n/k

f overall absorption along a tube

f̂ overall absorption capacity along a tube

Pe Péclet number, ratio of diffusive and advective timescale

S ratio of the timescales for absorption

b concentration decay constant

R

tissue
fluid
tube

metabolites

J (C)

Q

Qout

Qout

Qout

absorptionoutflow

�

f

(b)(a)

(c)

Figure 1. Schematic sketch of metabolite supply in leaves. (a) Vasculature of
a leaf displaying the primary vein horizontally at the centre and secondary veins
as next biggest veins departing from the primary vein, down to the highly
inter-webbed higher order veins. (b) The secondary vein (thick blue) supplies
the tubular higher order vein network with metabolites and fluid. (c) Xylem
vessel network modelled as network of tubes of varying radius R and
length ‘. Inflow of fluid flow rate Q and metabolite flux J from upstream
tubes (left). Fluid evaporation through stomata at the leaf surface modelled
by constant outflow Qout at every network node. Metabolites are advected
and diffuse within the fluid. In addition, metabolites get absorbed f along
the tube wall into cells at a constant rate n. (Online version in colour.)
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investigated optimal network topologies with minimal trans-

port cost in the form of dissipation [26,28,29]. Including

robustness to damage or flow fluctuations [30,31] or vessel

growth [32] in these studies resulted in network topologies

in closer resemblance to observable vascular networks. How-

ever, despite the efforts to find minimal dissipation networks

to understand transport networks in nature, it is not obvious

that the efficiency of a transport network is what organisms

optimize for. Instead, measurements on zebrafish vasculature

suggest that biological transport networks maintain uniform

partitioning of blood cells and thus uniform oxygen supply

[33] and are not optimized for minimal dissipation. The vas-

culature architecture might, as established for tissue, be built

for the uniform supply of metabolites like oxygen, nutrient

compounds or biochemical signals. A further indication is

that networks adapt to reinforce supply to tissues and

organs [34].

The spread of metabolites through fluid flow is well

described in hydrodynamics. Here, the transport of particles

in a single long slender tube is efficiently captured by Taylor
dispersion [35–37]. The important contributions of particle

transport are advection by fluid flow and molecular diffu-

sion, resulting in a decoupling of flow dynamics and

particle concentration dynamics. Transport of particles that

in addition get absorbed along the tube wall is well studied

in the setting of heat conduction [38–41]. Yet, the concen-

tration patterns of particles within a transport network are

fundamentally more complicated due to the particle concen-

tration being coupled in a global manner by the network

spanning flow. Thus, further theoretical development is

required as presented here.
While a hydrodynamic perspective provides a general

picture with a minimum of assumptions and hence a broad

applicability, the specifics of metabolite flow differ between

biological systems. In light of network optimization

approaches [30–32], we apply the general hydrodynamic

perspective to the tissue specifics of plant leaf xylem vessels

in dicotyledons. In plants, the transport of water and metab-

olites, especially soil-bound nutrients and minerals like

nitrate or potassium [11], from the plant roots to the leaf

tissue is routed in highly pitted and rigidly lignified xylem

veins [42]. Xylem veins should not be confused with the

oppositely routed phloem veins predominantly transporting

sugar away from the leaf tissue [43,44]. We consider the

spread of the scarce metabolites in xylem fluid as limiting for

maintaining the function of leaf cells and thus focus on the

xylem network neglecting the detailed spreading dynamics

of metabolites within the tissue itself. Metabolites enter leaf

cells dominantly at the level of inter-webbed higher order

veins, while the primary and secondary order veins distribute

metabolites over the large scale of the leaf [45]. Here, we

focus on a leaf tissue excerpt pervaded by higher order veins.

A secondary vein is the source of metabolite-enriched fluid

flowing through higher order vessels pervading the leaf tissue

(figure 1a,b). Fluid flow is regulated through evaporation

control across the entire leaf blade [46]. Evaporation is com-

monly modelled by a constant outflow of fluid at every

node within the vascular network [30,31], for details see

electronic supplementary material S1. Metabolites are absorbed

continuously along the walls of the tubular vessels into the

tissue supplying the cells there (table 1).

In this paper, we develop a theoretical framework to

optimize flow dynamics and architecture of transport

networks for uniform supply of metabolites to surrounding

tissues focusing exemplarily on plant xylem networks. We

derive analytical expressions for the absorption of metab-

olites within a single tube and use these results to simulate

supply patterns in the inter-webbed transport networks.

We find that the inflow rate is the dominant factor
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controlling supply patterns for all network architectures. For

low inflow rates, average fluid velocities are small and metab-

olites are mainly absorbed next to the flow inlets. For high

inflow rates, average velocities are fast and metabolites

are mainly absorbed at the far end opposing the inlets.

In between, we identify an optimal inflow rate that yields

uniform absorption and thus supply levels. We present a

one-dimensional network analogue that allows us to derive

an analytical expression for the optimal flow rate as a func-

tion of system parameters such as network size and

average tube radius in agreement with simulations. Further

optimizing the network architecture for low, optimal or

high inflow rate, we find that localized adaptation in tube

radius is capable of compensating for the non-uniform

supply patterns at low and high inflow rate, yet cannot

outcompete the optimal inflow rate.
 e
15:20180075
2. Results

2.1. Metabolite absorption across a fluid-filled tube
Consider a cylindrical tube filled with fluid flowing at flow

velocity U(r, z) along the tube. Metabolites are advected

with the flow and in addition disperse due to molecular dif-

fusion with diffusivity k. Considering the small scales of

xylem vessels and xylem flow, we are in the regime

of low Reynolds number, where flow is best described

by laminar Poiseuille flow. Thus, we describe the

flow along the longitudinal axis z varying in radial direc-

tion r in the circular tube with a radius R and length ‘ as,

U(r, z) ¼ 2(1 2 r2/R2)kU(z)lr. Here, kUlr denotes the cross-

sectionally averaged longitudinal velocity. The spread of

metabolites of concentration C is thus fully described by

@C
@t
þU(r, z)

@C
@z
¼ k

1

r
@

@r
r
@C
@r

� �
þ @

2C
@z2

� �
: ð2:1Þ

Metabolites are absorbed into the surrounding tissue along

the tube wall, given by the boundary condition

k
@C
@r

����
r¼R
þ nC(R) ¼ 0, ð2:2Þ

analogous to heat absorption or surface reactions. Here,

the parameter n denotes the metabolite absorption rate

at the tube wall. Dividing n by the molecular diffusivity,

we define the absorption parameter g, where we consider n

as a constant tissue property. According to [38], the

advection–diffusion equation, equation (2.1), can be re-

formulated employing both the boundary condition

equation (2.2) and the Poiseuille profile as a single

absorption–advection–diffusion equation in cylindrical

coordinates.

In analogy to the derivation of Taylor dispersion by

Taylor [35], a simpler, though approximated, expression

is possible where the concentration dynamics only

depend on the longitudinal coordinate z. To this end, the

metabolite concentration is separated into the sum of a

cross-sectional average concentration kClr and the radial

variation C0, C(r, z) ¼ kC(z)lr þ C0(r, z). The multidimen-

sional diffusion–advection for C(r, z) ¼ kC(z)lr þ C0(r, z)

can be simplified to an equation for the cross-sectionally

averaged concentration kC(z)lr if the cross-sectional variations

of the concentration C0(r, z) are much smaller than the
averaged concentration itself [35,47], resulting in

@kClr

@t
¼ � 2k

R2

4gR
4þ gR

kClr �
12þ gR
12þ 3gR

kUlr
@kClr

@z

þ kþ 12þ gR
12þ 3gR

kUl2
r R2

48k

 !
@2kClr

@z2
: ð2:3Þ

This approach employs three approximations. First, the time-

scale of diffusion across the tube’s cross section has to be

much smaller than the timescale of advection, ‘/kUlr� R2/k.

This sets an upper bond for the later choice of the fluid

inflow rate. The second assumption states that the cross-

sectional variations of the concentration have to be small

kClr� C0. As a high absorption parameter g implies a large

concentration gradient across the cross section, the second

assumption implies gR� 1. Third, the variation of C0 has

to be much greater in radial direction than in flow direction

@2
rC0 � @2

zC0. The last assumption implies the tube radius

to be smaller than its length R� ‘. This is fulfilled by long

slender tubes.

Employing these assumptions, the cross-sectional average

metabolite concentration along a tube in steady state is given

by an exponential decay from initial concentration C0,

kC(z)lr ¼ C0 exp �b z
‘

� �
and

b ¼ 24 � Pe

48þ Rg � Pe=S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 � S

Pe
þ 3

4
� Rg

r
� 1

 !
: ð2:4Þ

Here, we introduced two-dimensionless variables Pe and S.

Pe ¼ kUlr‘/k is the well-known Peclet number describing

the relation between diffusive and advective timescale. S is

the ratio of the timescale for absorption, given by the product

of the dimensionless absorption parameter and time to dif-

fuse across the tube’s cross section, and the time to be

advected out of the tube, resulting in S ¼ gk‘/RkUlr.

Considering a constant influx J0 by advection and diffu-

sion of metabolites at the tube’s start, we find that the

initial concentration C0 is given by

C0 ¼
J0

kUlr þ k(b=‘)
: ð2:5Þ

The overall absorption f along a tube is given by the

integrated flux of metabolites across the tube wall W,

f ¼ 2pR
Ð
W krC dz, where dz is integrating over the

length of the tube. As in the derivation of the effective

diffusion–advection–absorption equation equation (2.3), we

use Rg� 1 to arrive at

f ¼ pR2J04
S

Pe
48þ Rg � Pe

S

� �

� (48� (Rg � Pe=S)(L� 2))

48(48þ gR � Pe=Sþ 24(L� 1)) � (L� 1)

� 1� exp �24 � Pe � L� 1

48þ gRPe=S

� �� �
,

ð2:6Þ

where L is an abbreviation L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8S=Peþ 3=4gRþ 1

p
. We

identify two factors that control the absorption in a tube. The

first is the total influx of metabolites over the cross-sectional

area of the tube pR2J0. The total influx of metabolites is the

upper limit for absorption in the tube. The second factor is

the tube’s capacity to absorb metabolites as f̂ ¼ f=pR2J0

with f̂ [ [0, 1]. This absorption capacity is independent of

the concentration of metabolites and only depends on the

parameters of the tube and the flow velocity within the tube.
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For the derivation of the optimal inflow rate, it is essential

to approximate the absorption capacity as resulting from

equation (2.6). We initially approximate the inverse of the

absorption capacity f̂�1 by taking a finite Pe . 0 and using

Rg� 1 to find f̂�1 ¼ 1=2Sþ 1. Resubstituting the system’s

parameters for S, we find for the absorption capacity of a tube

f̂ ¼ 2gk‘

RkUlr þ 2gk‘
: ð2:7Þ

Note the simple dependence of the absorption capacity

on the cross-sectionally average flow velocity in the tube.

The approximation of the absorption capacity has been

verified numerically to hold over the parameter space

considered here, see electronic supplementary material S4.

Note that this simplified expression is only used for the

analytical derivation of the optimal inflow rate. For simu-

lations, the full expression equation (2.6) is used. From now

on, we drop the brackets klr and only refer to cross-sectional

averaged observables.

2.2. Absorption patterns in fluid flow-driven transport
networks

In a transport network, individual tubes are connected at

nodes. Here, we aim to model the geometry of higher order

xylem veins branching from a second order vein in dicotyle-

dons, as shown in figure 1b. We choose a planar transport

network representing a rectangular excerpt of the leaf

tissue. For the tissue excerpt we choose a general vasculariza-

tion using a slightly randomized tessellation of space, where

the network is built with small triangles, known to bear least

artefacts [30]. A small Gaussian noise of a twentieth tube

length ‘ is added to the positions of the tessellation nodes

to avoid pattern artefacts arising from the underlying top-

ology otherwise, see electronic supplementary material S2.

The tube length varies accordingly in a normal distribution

around the mean tube length k‘l. In agreement with obser-

vations of diminishing hierarchy in the higher interwebbed

xylem vessel radii [20,48], we set the same radius R for all

tubes. Fluid and metabolites are flowing into the network

at network nodes along one side of the rectangular region,

representing the supply from secondary veins into the

tissue. Xylem vessels are organized in vascular bundles in

lower order veins that branch out into the interwebbed

higher order xylem network [49] presumingly supplying

the same flow at every inflow node. Therefore, we approxi-

mate inflow rates Qin to be equal at all inflow nodes. To

represent the effect of fluid evaporation at stomata, fluid,

but not metabolite, is flowing out at every node in the net-

work Qout (figure 1c). Metabolites are absorbed across each

tube wall. The absorption rate n is constant throughout the

network. Yet, as we have learned by studying a single tube

in the previous section, the amount of metabolite absorbed

depends on how much metabolite is available in the fluid,

and how much time the metabolite has to travel to the tube

wall to get absorbed. Therefore, absorption despite a constant

absorption rate varies largely within a network.

The flow of the metabolites is determined by the fluid

flow in accordance with equation (2.1). The fluid flow

throughout a network is fully defined by the network’s archi-

tecture, the inflow and outflow rates and Kirchhoff’s circuit

law. The cross-sectionally averaged fluid flow velocity in a tube

follows subsequently from pressure drops DP ¼ Rhyd
. Q
along the tube. Each tube is considered as straight cylinder

with hydraulic conductance of K21
hyd ¼ (8/p)‘h(1/R4), where

h denotes the dynamic fluid viscosity. The pressure at

every node is calculated by multiplying the inverse of the net-

work conductivity matrix with the inflow or outflow rates at

every node. The pressure drop along the tube is the difference

between the pressure values at the start and end node. The

fluid flow is solved consistently through the whole network

and takes network geometry and viscous and friction forces

via the hydraulic resistance into account. Considering

steady-state solutions, the flow does not fluctuate over time.

The absorption of metabolite across a tube’s wall within

the network depends on the metabolite available and the

tube’s absorption capacity. The absorption capacity of the

tube follows directly from each tube’s physical parameters

and the fluid flow velocity within the tube. Next, we need to

calculate the influx of metabolites J0 in every tube which we

solve iteratively throughout the network starting with the

influx nodes, see electronic supplementary material S3A. For

simplification, we focus on stationary, steady-state absorption

patterns. We employ that metabolite flux is conserved at every

network node. All metabolites flowing into a node are

redistributed into tubes originating from this node. Redistri-

bution is proportional to diffusion and flux into each tube.

The metabolite outflux at the end of a tube is then given by

the difference in metabolite influx and total absorption

along the tube. Finally, at the lower end of the considered

network excerpt, opposite the inflow nodes, remaining metab-

olites are flowing out of the network. As the outflowing

metabolites would lead to an accumulation of metabolites,

we state the amount of metabolites not absorbed for every

considered network excerpt.

Taking our initial motivation from plant leaves, we

choose an average tube length ‘ ¼ 0.1 mm and tube radius

R ¼ 3 mm in accordance with xylem vessels [20,21,50]. Note

that there is a difference between leaf vein and xylem vessel

radius, as leaf veins bundle both phloem and xylem vessels.

We thus consider xylem vessels to be less than half the

radius of leaf veins in our parameter choice. The order of

magnitude of the total inflow rate is chosen to yield velocities

observable in lower order xylem vessels kUlr � 1 mm s21. We

vary the fluid inflow rate between Qin ¼ 0.8 � 1026 mm3 s21

to Qin ¼ 6.4 � 1026 mm3 s21. The choice of the inflow is

consistent with a average water evaporation of approximately

0.1 mol m22 s21 [42,51] and an average stomata density of

200 mm22 [52]. For the molecular diffusivity, we consider

small molecules with k ¼ 1 � 10210 m2 s21. For the network

size, we choose a triangulation with N � 1000 tubes. As

xylem vessels consist of highly pitted dead lignified tissue,

no active absorption by chemical reactions but passive

absorption by membrane permeation is expected. Values

for membrane permeation are typically in the range of

n � 1 � 1029 m [53] and depend on both membrane and

metabolite properties. Alternatively an estimation for the

absorption parameter g can be derived from concentration

profiles in xylem veins [54]. Translating the measured expo-

nential decay for higher order veins, we find g � 10 m21

[54,55]. This estimate for g is in accordance with estimates

using membrane permeation. Thus, for the numerical calcu-

lations an absorption parameter of g ¼ 10 m21 is chosen.

Revisiting the three assumptions made in equation (2.3), we

verify that these assumptions hold for the chosen network

topologies, see electronic supplementary material S4.
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Figure 2. Supply patterns are controlled by fluid inflow rates. Supply pattern
of a rectangular tissue section pervaded by a transport network for increasing
fluid inflow rate ranging from (a) Qin ¼ 0.8 � 1026 mm3 s21, via (b)
Qin ¼ 3.2 � 1026 mm3 s21, to (c) Qin ¼ 6.4 � 1026 mm3 s21. The trans-
port network is built of tubes of equal radius and roughly equal length
triangulating the tissue section under consideration. Metabolites are absorbed
across tube walls into the tissue. (a(i),b(i),c(i)) Supply pattern in every trian-
gulated tissue section given by the average metabolite absorption along
neighbouring tubes. The absorption is normalized with the inverse of the
total influx J21

tot and the total number of tubes N . (a(ii),b(ii),c(ii)) Standard
deviation and mean absorption per row counting downward from the inflow
nodes at the top of the network. At low inflow rates (a) metabolites are
absorbed close to inflow and are not transported through the network
while for high inflow rates (c) metabolites get flushed through the network
for being absorbed mainly at the end. The variance in absorption across all
tubes is 0.75 for the low inflow rate and 2.35 for the high inflow rate. In
between these two cases, an optimal inflow rate with the lowest variance
exists (b) that yields uniform supply and an overall variance of only 0.07.
Remaining metabolites are flowing out at the bottom end amounting to
0.6%, 4.2% and 19.4% of the metabolite influx for (a), (b) and (c),
respectively. (Online version in colour.)
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We first study metabolite supply patterns in uniform

transport networks, where all tubes have the same radius

R. To compare different inflow rates, we normalize the

absorption by the total influx of metabolites. We find that

the total fluid inflow rate is dominating the supply patterns

(figure 2). For small inflow rate, average flow velocities in

the network are slow and the highest absorptions is near

the inflow nodes. Metabolites are not transported through

to the end of the network limiting supply there. Calculating
the mean absorption per row frow from inflow to the oppos-

ing end, we can characterize this regime by frow . frowþ1

(figure 2a(ii),b(ii),c(ii)). For high inflow rates, average flow

velocities are fast and the absorption increases with the dis-

tance from the inflow nodes frow , frowþ1. Metabolites

arrive at the end of the network too quickly before getting

absorbed limiting supply close to the inflow nodes. Between

these limiting cases, we identify an inflow rate that gives rise

to an optimally uniform supply pattern. We define the

optimum by the lowest variance. The variance is calculated

over the ensemble of all tubes. The overall variance in the

optimal case is 0.07 compared to 2.35 and 0.75 in the

examples of low and high inflow rate, respectively,

shown in figure 2. In the optimally uniform supply pattern,

absorption is the same constant rate in subsequent rows,

frow ¼ frowþ1. On the basis of this simple relation stating uni-

form absorption, a scaling law for the optimal inflow rate is

derived next.
2.3. Scaling law for the optimal inflow rate
To derive a scaling law for the optimal inflow rate that gives

rise to the most uniform supply pattern, we consider a

one-dimensional toy model of connected single tubes that

captures the essential flow and transport characteristics

along the rows of the two-dimensional transport networks

investigated above. For this, we look at a straight pipeline

of N identical tubes. As for the networks considered in the

previous section (figure 2), all tubes are of the same radius

R and length ‘, in accordance with observations of diminish-

ing radius hierarchy in higher order veins [20,48]. Metabolites

and fluid are flowing into the first tube Qin and fluid is leav-

ing at a constant rate Qout at every node between adjacent

tubes. Metabolites cannot exit at nodes but remain in the

fluid until the very end of the pipeline or are absorbed.

Also the fluid inflow rate and total fluid outflow rate are

equal, i.e. Qout ¼ Qin/N. This results in a constant decrease

in flow rate by Qin/N from one tube to the subsequent. To

translate this to cross-sectionally averaged flow velocities,

which are the flow properties determining absorption, we

use U ¼ Q/pR2. Consequently, the flow velocity in segment

m þ 1 is given by Umþ1 ¼ Um 2 Qin/pR2N.

The outflux of metabolites from one tube is equal to the

influx of metabolites in the subsequent tube Jout,m ¼ Jin,mþ1,

as all tubes have the same radius R. If pR2J0 is the total

amount of metabolites flowing into the first tube, then only

the fraction 1� f̂1 is flowing out while the fraction f̂1 is

absorbed. Generalizing we determine the absorption in

tube m as

fm ¼ pR2J0f̂m

Ym�1

j¼1

(1� f̂j): ð2:8Þ

The state of optimally uniform absorption is now defined by

absorption in subsequent tubes being equal. We use this con-

straint to determine the inflow rate that corresponds to the

optimally uniform supply pattern. Using equation (2.8) to

write the absorption in the m þ 1 tube as a function of the

absorption in the previous tube and inserting the equality

constraint, we arrive at an expression including absorption

capacities only, (1� f̂m)f̂mþ1 ¼ f̂m. Inserting the simplified

expression for the absorption capacity from equation (2.7),

we find the scaling law determining the optimal inflow rate
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to yield uniform absorption

Qin ¼ 2pkgLR, ð2:9Þ

where L ¼ N‘ denotes the length of the sequence of pipes.

Note that this condition is independent of which tube seg-

ment m is considered. The absorption is uniform along the

entire sequence of tubes.

Our toy model is set up to capture the essential flow and

transport characteristic along the rows of a two-dimensional

network excerpt modulus a geometrical factor. To confirm

that the same functional dependence of the optimal inflow

rate holds for two-dimensional networks, we return to our

simulations of rectangular two-dimensional networks. For a

given parameter choice, we vary the inflow rate and deter-

mine its optimal value by the minimal variance in

absorption. We independently vary the absorption parameter

g and the tube radius R, equal for all tubes right now, as well

as the overall size of the network L (figure 3). While one par-

ameter was varied, the other parameters were kept constant.

To cover a large parameter range, base parameter values are

chosen as ‘ ¼ 0.1 mm, R ¼ 3 mm and g ¼ 10 m21, see elec-

tronic supplementary material S5. For each parameter

combination, the inflow rate was varied in step sizes of

DQ ¼ 1.5 � 1026 mm3 s21. Note, to increase the overall size

of the network, additional nodes where added. Therefore,

Qout decreased, and thus the overall flow velocity gradient

decreased. Each run over a parameter combination was

repeated 15 times with different random Gaussian node

perturbations of a rectangular two-dimensional network

with tubes of the same radii R. We find a linear scaling

between the optimal inflow rate and the absorption par-

ameter, the radius, and the overall size of the network in

agreement with the scaling law’s prediction. Even more, if

we multiply the optimal inflow rate derived above for the

one-dimensional tube network by a geometrical factor G taking

into account the two-dimensional network geometry, the numeri-

cal results followexactly the analytical prediction. The geometrical

factor is a product of three terms G¼ GL
.GAR

.GIF, where the

first term is correcting the length of the network and the later

two are needed to correctly link the velocity profiles with the

inflow in the network. The total length of the network in flow

direction is effectively shortened as tubes of the two-dimensional

network are not connected with an angle of 1808 as in the toy

model, but the network is a tessellation of approximately equi-

lateral triangles. The length of the network has thus to be

shortened corresponding to the ratio of height and side
length of such a triangle with GL ¼
ffiffiffi
2
p

=3. Considering the

rows of nodes, the inflow of fluid in 16 nodes is distributed

to 17 nodes in the next row. The flow in tubes connecting

these two layers of nodes is thus reduced by the ratio

GAR ¼ 16
17. As the total inflow is the inflow over the complete

width of the network, the optimal inflow has to flow into

every two to three tubes connected to the 16 inflow node

giving rise to GIF ¼ 47.
2.4. Optimization of network architecture for uniform
supply

We found that a global change in the total fluid inflow rate is

the most important control mechanism to generate uniform

supply patterns in a tissue pervaded by a transport network.

How does a network architecture need to change to compen-

sate low or high inflow rates? How much more can we

minimize the variance in absorption even if the fluid flow

rate is optimal? To answer these questions, we now optimize

our previously found supply patterns by allowing for local

dilation or contraction of tubes starting with the randomized

networks introduced above. In addition to tube dilation

and contraction, changes to the network architecture by

discarding entire tubes are allowed. A tube is regarded as

cut, if its radius is reduced below a threshold of 0.05 mm,

compared to an average tube radius of R ¼ 3 mm. While

locally changing the network architecture, we keep the total

amount of material M ¼
P

i Ri‘i within the network constant

as we redistribute changes in M over all radii equally. For

this, we numerically optimize the network topology using

Monte Carlo methods, explained in detail in electronic

supplementary material S3B.

We optimize the network architecture regarding uniform

tissue supply for the cases of low, high and optimal inflow

rate (figure 4). In all three cases, overall variance in absorp-

tion was successfully decreased. For low inflow rates, we

observe a contraction of tubes near the influx nodes and an

expansion of tubes towards the opposing end. Contraction

of tubes speeds up flow velocities thus reducing otherwise

dominating absorption close to the inflow nodes and thereby

making metabolites available for absorption further onwards.

The increase in absorption follows spatially the rapid increase

in radius. This indicates that shifts in the radius distribution

impact the local absorption profile strongly. For high inflow

rates, we observe the opposite optimization mechanism.
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Tubes dilate close to the inflow and contract towards the

opposing end. Here, dilation decreases flow rate and

increases the absorption early on, while at the same time

reducing the amount of metabolite flushing through.

For the optimal inflow rate, we observe slight dilation

near the inflow and near the outflow nodes. These changes

correct for network artefacts arising from the chosen rec-

tangular form of the excerpt. In all optimized networks, we

find small fluctuations in the absorption pattern which

result from the randomized node positions and random

tube lengths.
3. Discussion
We investigated what is needed to achieve a uniform supply

rate of metabolites to tissue via a tubular transport network.

We find that the fluid inflow rate is the most important

control mechanism. We give an analytical scaling law for

the optimal inflow rate as a function of system parameters.

Yet, even if the optimal inflow rate is not available, altering

the network geometry by dilating or contracting certain

tube radii can reduce the overall variance in supply by an

order of magnitude.
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Optimizing for uniform supply rate across a transport

network is a novel perspective regarding the theoreti-

cal investigation of optimal transport networks, where

the focus is mainly on minimizing total dissipation

P ¼
P

i Q2
i =Khyd,i ¼

P
i pkUl2

i h‘i [30,31,56,57]. For compari-

son, we compute the total dissipation for our example

network shown in figures 2 and 4. For the networks of

equal radii, we find that the dissipation for the optimal

inflow rate is of the same order of magnitude to hundredfold

higher than for the less uniform supply patterns arising from

low and high inflow rates, respectively. Optimizing the net-

work architectures to enhance uniform metabolite supply

even increases total dissipation for low and optimal inflow

rate, while dissipation is only slightly decreased for high

inflow rates. We conclude that total dissipation and uniform

metabolite supply are orthogonal properties regarding trans-

port networks. It could well be that biological transport

networks balance both properties by optimizing them at the

same time. Yet, we observe the differentiation of biological

transport networks into different types of tubes like lower

order versus higher order veins. This suggest that biological

transport networks could be divided into parts that are tar-

geted at transport costs, others targeted at mechanical

structures, and others targeted at supply.

We find that the inflow rate into a tissue has the biggest

impact on how uniform supply is throughout the tissue.

For plants, sub-optimal environments, such as a drought,

lead to a reduction in water flow. Following our results, a

change in the inflow rate will result in a change in the

supply pattern, even if the same amount of metabolite is

still available. Plant leaves can actively control fluid flow

rates by managing evaporation via opening and closing of

stomata. It is inspiring to note that therefore plants could con-

trol, to some extent, for optimal inflow rates. Unfortunately,

to our knowledge, no data on flow rates in leaf veins is avail-

able to test this. Alternatively, we find that specific patterns of

vein radii could also compensate sub-optimal inflow. Though

the adaptation of xylem veins on drought conditions has

received general attention, see e.g. [58–61], it has not been

investigated to what extent plants modify the hierarchy of

higher order xylem vessel radii for compensatory patterns

when grown in sub-optimal conditions. Although our find-

ings predict the regulation of the flow rate by stomata

control to be the dominant mechanism, it would be fascinat-

ing to check for radii patterns in higher order vessels with

established means of vessel network analysis [48].

We investigated uniform metabolite supply by xylem vein

vasculature focusing on two dimensions. On the level of mod-

elling metabolite absorption on vessel walls, our framework

can readily be extended to network topologies embedded in

a three-dimensional space. That said, the dynamics of metab-

olite supply within the tissue surrounding the vessel walls

changes dramatically if we go from two to three dimensions,

simply because the physical space to be supplied increases.

The spatial distribution of metabolite concentration in the

tissue can be resolved by an explicit treatment of the reaction–

diffusion dynamics in the extravascular space. Here, for

example the Krogh formalism allows this computationally

complex task to be reduced to the spacing between vessels

as an additional parameter [15,16]. To our knowledge the

concept of Krogh radii has yet not been considered in plant

tissue. As we consider flat leaves, we restricted our analysis

here to two dimensions. We studied vascular networks
with biological observed vessel spacing of k‘l � 0.1 mm in

our model, assuming that metabolite spread for these

physiological values is not limited within the tissue but

rather limited by the supply through the vasculature. As we

investigate uniform supply patterns the variation in absorption

rates of neighbouring vessels is by definition very small, also

limiting supply variations in the tissue.

As leaf vascular specifics have been incorporated in our

model using a distinct source and sink distribution on the net-

work level, the derived scaling law is only applicable to higher

order xylem vessel networks. However, the chosen hydrodyn-

amic perspective of the metabolite spread through a vascular

system considers only few assumptions and thus also allows

for board applicability in other biological systems. As such,

the absorption along a tube can be discussed in the setting

of capillary beds in animal vasculature. Here, metabolites

may be actively transported across the vessel wall with poten-

tially nonlinear reaction kinetics that we in this work only

approximate by a linear absorption parameter. More impor-

tantly, vessels are so small that blood flows in a plug flow

and not Poiseuille flow. In our theoretical work, Poiseuille

flow is the key to generate the fast mixing of metabolites

across a tube, which is impaired in the pure plug flow. How-

ever, blood cells being squeezed through the tiny vessel create

turbulent eddies and recirculation zones in the flow, which

drive fast mixing across a vessel [16]. Based on fast mixing,

our results may very well be applicable to capillary beds.

For capillary beds, inflow rates are at first approximation a

function of heart rate and the allocation of fluid along the

hierarchical circulatory system. However, capillary beds

also auto-regulate their flow by dilating or contracting so-

called sphincters situated at the inflow nodes that dilate or

contract the capillaries close by [16]—a control mechanism

in agreement with our findings. Note that in this example

even the location of compensatory regulation close to the

inflow follows the predictions of our hydrodynamic model.

Taken together the evidence of control mechanisms in

plant and animal vasculature, albeit scarce, suggests that

indeed uniform supply might very well be targeted at the

level of higher order veins and capillary beds. Our scaling

law predicts a simple relationship between inflow rate and

tissue size or vessel radius. Thereby, we pave the way for

experimentally investigating supply patterns in biological

transport networks.

Transport networks are at the basis of not only biological

organisms but also technological design and medical appli-

cations. Investigating what properties make a transport

network give rise to uniform supply, we identify the most

important control mechanism, mainly inflow rate and sec-

ondary vessel diameter close to inlets. These controls may

be important for so many more transport systems than the

ones exemplified here. But most importantly, it sheds light

on our understanding of the transport dynamics and not

just fluid flow profiles in transport networks.

Data accessibility. This article has no additional data.

Authors’ contributions. F.J.M. and K.A. designed and, performed research
and wrote the paper.

Competing interests. The authors declare no conflict of interests.

Funding. This research was supported, in part, by the Deutsche For-
schungsgemeinschaft (DFG) via grant no. SFB-937/A19 and the
Max Planck Society.

Acknowledgements. We thank M. P. Brenner and P. Cha for their initial
discussions about absorption in single tubes.



9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 J

ul
y 

20
23

 

References
rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180075
1. Sen P, Dasgupta S, Chatterjee A, Sreeram PA,
Mukherjee G, Manna SS. 2003 Small-world
properties of the Indian railway network. Phys.
Rev. E 67, 036106. (doi:10.1103/PhysRevE.67.
036106)

2. Rohden M, Sorge A, Timme M, Witthaut D. 2012
Self-organized synchronization in decentralized
power grids. Phys. Rev. Lett. 109, 064101. (doi:10.
1103/PhysRevLett.109.064101)

3. Rodriguez-Iturbe I, Rinaldo A. 1997 Fractal river
basins: chance and self-organization. Cambridge, UK:
Cambridge University Press.

4. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK.
1997 Macro- and microscopic fluid transport in
living tissues: application to solid tumors. AIChE J.
43, 818 – 834. (doi:10.1002/aic.690430327)

5. Kapellos GE, Alexiou TS, Pavlou S. 2015 Chapter
8—Fluid – biofilm interactions in porous media. In
Heat transfer and fluid flow in biological processes
(eds SM Becker, AV Kuznetsov), pp. 207 – 238.
Boston, MA: Academic Press.

6. Ma L, Ingham D, Pourkashanian M. 2005 16—
Application of fluid flows through porous media in
fuel cells. In Transport phenomena in porous media
III (eds D Ingham, I Pop), pp. 418 – 440. Oxford, UK:
Pergamon.

7. Santini JT, Cima MJ, Langer R. 1999 A controlled-
release microchip. Nature 397, 335 – 338. (doi:10.
1038/16898)

8. Tufenkji N, Elimelech M. 2004 Correlation equation
for predicting single-collector efficiency in
physicochemical filtration in saturated porous
media. Environ. Sci. Technol. 38, 529 – 536. (doi:10.
1021/es034049r)

9. Levey AS et al. 2009 A new equation to estimate
glomerular filtration rate. Ann. Intern. Med. 150,
604 – 612. (doi:10.7326/0003-4819-150-9-
200905050-00006)

10. Isogai S, Horiguchi M, Weinstein BM. 2001 The
vascular anatomy of the developing zebrafish: an
atlas of embryonic and early larval development.
Dev. Biol. 230, 278 – 301. (doi:10.1006/dbio.2000.
9995)

11. Choat B, Munns R, McCully M, Passioura J, Tyerman
S, Bramley H, Canny M. 2010 Water movement in
plants. In Plants in action (eds B Choat, R Munns),
ch. 3. Melbourne, Australia: Australian Society of
Plant Scientists. See http://plantsinaction.science.uq.
edu.au/content/chapter-3-water-movement-plants.

12. Boddy L, Hynes J, Bebber DP, Fricker MD. 2009
Saprotrophic cord systems: dispersal mechanisms in
space and time. Mycoscience 50, 9 – 19. (doi:10.
1007/S10267-008-0450-4)

13. Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker
MD, Yumiki K, Kobayashi R, Nakagaki T. 2010 Rules
for biologically inspired adaptive network design.
Science 327, 439 – 442. (doi:10.1126/science.
1177894)
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39. Graetz L. 1882 Über die wärmeleitungsfähigkeit von
flüssigkeiten. Ann. Phys. 254, 79 – 94. (doi:10.1002/
andp.18822540106)

40. Datta S, Ghosal S. 2008 Dispersion due to wall
interactions in microfluidic separation systems. Phys.
Fluids 20, 012103. (doi:10.1063/1.2828098)

41. Hemida HN, Sabry MN, Abdel-Rahim A, Mansour
H. 2002 Theoretical analysis of heat transfer in
laminar pulsating flow. Int. J. Heat Mass Transf.
45, 1767 – 1780. (doi:10.1016/S0017-9310(01)
00274-5)

42. Zwieniecki MA, Melcher PJ, Boyce CK, Sack L,
Holbrook NM. 2002 Hydraulic architecture of leaf
venation in Laurus nobilis L. Plant Cell Environ.
25, 1445 – 1450. (doi:10.1046/j.1365-3040.2002.
00922.x)

43. Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H.
2001 Evolution and function of leaf venation
architecture: a review. Ann. Bot. 87, 553 – 566.
(doi:10.1006/anbo.2001.1391)

44. Jensen KH, Rio E, Hansen R, Clanet C, Bohr T. 2009
Osmotically driven pipe flows and their relation to
sugar transport in plants. J. Fluid Mech. 636,
371 – 396. (doi:10.1017/S002211200900799X)

45. Holbrook NM, Zwieniecki MA. 2011 Vascular
transport in plants. New York, NY: Academic Press.

http://dx.doi.org/10.1103/PhysRevE.67.036106
http://dx.doi.org/10.1103/PhysRevE.67.036106
http://dx.doi.org/10.1103/PhysRevLett.109.064101
http://dx.doi.org/10.1103/PhysRevLett.109.064101
http://dx.doi.org/10.1002/aic.690430327
http://dx.doi.org/10.1038/16898
http://dx.doi.org/10.1038/16898
http://dx.doi.org/10.1021/es034049r
http://dx.doi.org/10.1021/es034049r
http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
http://dx.doi.org/10.1006/dbio.2000.9995
http://dx.doi.org/10.1006/dbio.2000.9995
http://plantsinaction.science.uq.edu.au/content/chapter-3-water-movement-plants
http://plantsinaction.science.uq.edu.au/content/chapter-3-water-movement-plants
http://dx.doi.org/10.1007/S10267-008-0450-4
http://dx.doi.org/10.1007/S10267-008-0450-4
http://dx.doi.org/10.1126/science.1177894
http://dx.doi.org/10.1126/science.1177894
http://dx.doi.org/10.1103/PhysRevE.86.021905
http://dx.doi.org/10.1103/PhysRevE.86.021905
http://dx.doi.org/10.1113/jphysiol.1919.sp001839
http://dx.doi.org/10.1113/jphysiol.1919.sp001839
http://dx.doi.org/10.1364/OE.16.017530
http://dx.doi.org/10.1364/OE.16.017530
http://dx.doi.org/10.1016/j.media.2012.04.009
http://dx.doi.org/10.1103/PhysRevLett.117.178103
http://dx.doi.org/10.1111/nph.12253
http://dx.doi.org/10.1104/pp.103.031203
http://dx.doi.org/10.1098/rsbl.2008.0094
http://dx.doi.org/10.1111/j.1461-0248.2011.01712.x
http://dx.doi.org/10.1111/j.1461-0248.2011.01712.x
http://dx.doi.org/10.1103/PhysRevLett.110.018104
http://dx.doi.org/10.1126/science.2396104
http://dx.doi.org/10.1038/23251
http://dx.doi.org/10.1038/23251
http://dx.doi.org/10.1073/pnas.12.5.299
http://dx.doi.org/10.1103/PhysRevE.73.016116
http://dx.doi.org/10.1103/PhysRevE.73.016116
http://dx.doi.org/10.1103/PhysRevLett.98.088702
http://dx.doi.org/10.1103/PhysRevLett.98.088702
http://dx.doi.org/10.1103/PhysRevLett.104.048704
http://dx.doi.org/10.1103/PhysRevLett.104.048704
http://dx.doi.org/10.1103/PhysRevLett.104.048703
http://dx.doi.org/10.1103/PhysRevLett.104.048703
http://dx.doi.org/10.1103/PhysRevLett.117.138301
http://dx.doi.org/10.1371/journal.pcbi.1005892
http://dx.doi.org/10.1371/journal.pcbi.1005892
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1007/BF00042550
http://dx.doi.org/10.1002/andp.18822540106
http://dx.doi.org/10.1002/andp.18822540106
http://dx.doi.org/10.1063/1.2828098
http://dx.doi.org/10.1016/S0017-9310(01)00274-5
http://dx.doi.org/10.1016/S0017-9310(01)00274-5
http://dx.doi.org/10.1046/j.1365-3040.2002.00922.x
http://dx.doi.org/10.1046/j.1365-3040.2002.00922.x
http://dx.doi.org/10.1006/anbo.2001.1391
http://dx.doi.org/10.1017/S002211200900799X


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180075

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 J

ul
y 

20
23

 

46. Fricker M, Willmer C. 2012 Stomata. Berlin,
Germany: Springer Science & Business Media.

47. Cha P, Alim K, Brenner MP. In preparation. Absorption
in a dilating tube and its implication for blood flow.

48. Ronellenfitsch H, Lasser J, Daly DC, Katifori E. 2015
Topological phenotypes constitute a new dimension
in the phenotypic space of leaf venation networks.
PLoS. Comput. Biol. 11, e1004680. (doi:10.1371/
journal.pcbi.1004680)

49. Thorne ET, Young BM, Young GM, Stevenson JF,
Labavitch JM, Matthews MA, Rost TL. 2006 The
structure of xylem vessels in grapevine (Vitaceae)
and a possible passive mechanism for the systemic
spread of bacterial disease. Am. J. Bot. 93,
497 – 504. (doi:10.3732/ajb.93.4.497)

50. Sack L, Scoffoni C, McKown AD, Frole K, Rawls M,
Havran JC, Tran H, Tran T. 2012 Developmentally
based scaling of leaf venation architecture explains
global ecological patterns. Nat. Commun. 3, 837.
(doi:10.1038/ncomms1835)

51. Vico G, Manzoni S, Palmroth S, Katul G. 2011 Effects
of stomatal delays on the economics of leaf gas
exchange under intermittent light regimes. New
Phytologist 192, 640 – 652. (doi:10.1111/j.1469-
8137.2011.03847.x)

52. Woodward FI, Kelly CK. 1995 The influence of CO2

concentration on stomatal density. New Phytologist
131, 311 – 327. (doi:10.1111/j.1469-8137.1995.
tb03067.x)

53. Phillips R. 2013 Physical biology of the cell, 2nd edn.
London, UK: Garland Science, Taylor & Francis
Group.

54. van Bel AJ, Mostert E, Borstlap AC. 1979 Kinetics
of L-alanine escape from xylem vessels.
Plant Physiol. 63, 244 – 247. (doi:10.1104/
pp.63.2.244)

55. Horwitz L. 1958 Some simplified mathematical
treatments of translocation in plants.
Plant Physiol. 33, 81 – 93. (doi:10.1104/pp.
33.2.81)

56. Durand M. 2007 Structure of optimal transport
networks subject to a global constraint. Phys. Rev.
Lett. 98, 088701. (doi:10.1103/PhysRevLett.98.
088701)
57. Banavar JR, Colaiori F, Flammini A, Maritan A,
Rinaldo A. 2000 Topology of the fittest
transportation network. Phys. Rev. Lett. 84,
4745 – 4748. (doi:10.1103/PhysRevLett.84.4745)

58. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP.
2008 Metabolomic and proteomic changes in the
xylem sap of maize under drought. Plant Cell
Environ. 31, 325 – 340. (doi:10.1111/j.1365-3040.
2007.01770.x)

59. Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling
A. 2009 Drought-induced adaptation of the xylem
in Scots pine and pubescent oak. Tree Physiol. 29,
1011 – 1020. (doi:10.1093/treephys/tpp035)

60. Canny MJ, Sparks JP, Huang CX, Roderick ML. 2007
Air embolisms exsolving in the transpiration water
the effect of constrictions in the xylem pipes.
Funct. Plant Biol. 34, 95 – 111. (doi:10.1071/
FP06210)

61. Lovisolo C, Schubert A. 1998 Effects of water stress
on vessel size and xylem hydraulic conductivity in
Vitis vinifera L. J. Exp. Bot. 49, 693 – 700. (doi:10.
1093/jxb/49.321.693)

http://dx.doi.org/10.1371/journal.pcbi.1004680
http://dx.doi.org/10.1371/journal.pcbi.1004680
http://dx.doi.org/10.3732/ajb.93.4.497
http://dx.doi.org/10.1038/ncomms1835
http://dx.doi.org/10.1111/j.1469-8137.2011.03847.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03847.x
http://dx.doi.org/10.1111/j.1469-8137.1995.tb03067.x
http://dx.doi.org/10.1111/j.1469-8137.1995.tb03067.x
http://dx.doi.org/10.1104/pp.63.2.244
http://dx.doi.org/10.1104/pp.63.2.244
http://dx.doi.org/10.1104/pp.33.2.81
http://dx.doi.org/10.1104/pp.33.2.81
http://dx.doi.org/10.1103/PhysRevLett.98.088701
http://dx.doi.org/10.1103/PhysRevLett.98.088701
http://dx.doi.org/10.1103/PhysRevLett.84.4745
http://dx.doi.org/10.1111/j.1365-3040.2007.01770.x
http://dx.doi.org/10.1111/j.1365-3040.2007.01770.x
http://dx.doi.org/10.1093/treephys/tpp035
http://dx.doi.org/10.1071/FP06210
http://dx.doi.org/10.1071/FP06210
http://dx.doi.org/10.1093/jxb/49.321.693
http://dx.doi.org/10.1093/jxb/49.321.693

	Flow rate of transport network controls uniform metabolite supply to tissue
	Introduction
	Results
	Metabolite absorption across a fluid-filled tube
	Absorption patterns in fluid flow-driven transport networks
	Scaling law for the optimal inflow rate
	Optimization of network architecture for uniform supply

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


