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Flows over remarkably long distances are crucial to the func-
tioning of many organisms, across all kingdoms of life. Coordi-
nated flows are fundamental to power deformations, required for
migration or development, or to spread resources and signals. A
ubiquitous mechanism to generate flows, particularly prominent
in animals and amoebas, is actomyosin cortex-driven mechanical
deformations that pump the fluid enclosed by the cortex. How-
ever, it is unclear how cortex dynamics can self-organize to give
rise to coordinated flows across the largely varying scales of bio-
logical systems. Here, we develop a mechanochemical model of
actomyosin cortex mechanics coupled to a contraction-triggering,
soluble chemical. The chemical itself is advected with the flows
generated by the cortex-driven deformations of the tubular-
shaped cell. The theoretical model predicts a dynamic instability
giving rise to stable patterns of cortex contraction waves and
oscillatory flows. Surprisingly, simulated patterns extend beyond
the intrinsic length scale of the dynamic instability—scaling with
system size instead. Patterns appear randomly but can be robustly
generated in a growing system or by flow-generating bound-
ary conditions. We identify oscillatory flows as the key for
the scaling of contraction waves with system size. Our work
shows the importance of active flows in biophysical models
of patterning, not only as a regulating input or an emergent
output, but also as a full part of a self-organized machinery.
Contractions and fluid flows are observed in all kinds of organ-
isms, so this concept is likely to be relevant for a broad class
of systems.

active matter | pattern formation | fluid mechanics

F luid flows are fundamental to the functioning of all organ-
isms. They play an important role in homeostasis, by spread-

ing resources and biochemical signals (1–3). They power defor-
mations driving migration of many motile cells (4–6) and can
even directly impact organism size (7). Surprisingly, even in the
absence of a pacemaker like a heart, flows are coordinated on
vastly different scales ranging from the size of a single migrat-
ing cell of about 20 µm (8, 9), via the Caenorhabditis elegans
gonad of about 450 µm (10, 11), to the Drosophila embryos of
about 500 µm (12), to acellular slime molds of more than 2 cm in
size (13). The physical mechanism of how coordinated flows can
self-organize particularly in a single cellular envelope remains
unknown.

Animal and slime mold cells are lined with an actomyosin
cortex situated just below their cellular envelope, enclosing the
cells’ fluid cytoplasm. This actomyosin meshwork forms an active
viscoelastic material (14, 15). It contracts under myosin motor
activity and thereby drives the enclosed cytoplasm to flow into
a less contracted part of the cell (1, 16). Long-range flows
adapting to system size therefore require a spatial organiza-
tion of cortex contractility. The mechanism driving the coor-
dination of cortex contraction across a cell or an organism
is unclear.

Already in the early 1980s Oster and Odell (17, 18) explored
the idea that a contraction-triggering chemical, like calcium,
could explain dynamic, oscillatory patterns of actomyosin activ-
ity in the cell cortex. However, the dynamic patterns’ spatial

component was not investigated. Calcium is necessary to gener-
ate actomyosin contractions in many biological systems (19–22).
Additionally, calcium is regulated by mechanical stretching, via
mechanosensitive channels (23–26). Consequently, cortex expan-
sion triggers the influx of calcium which in turn leads to con-
traction. Due to the widespread importance of cortex activity
in developmental processes, this feedback is of general interest,
investigated in mechanochemical models (27). Models describ-
ing the cortex as a fluid (28) or as a poroelastic medium (29),
where active stress is up-regulated by a chemical immersed in
this medium, account for short-range traveling waves of con-
tractions and oscillatory flows. However, the mechanistic insight
is missing that can account for coordination of contractions on
scales beyond the intrinsic length scale of the dynamic system
and thus account for very long-range fluid flows scaling with
system size.

Particularly, the slime mold Physarum polycephalum is
renowned for long-range coordination of cortex contractions.
Here, fluid flows scale with organism size from 2 mm to at least
2 cm (13). Again, flows are known to power organism migration
(6, 30). Moreover, stimulants that alter cortex contractility have
recently been found to be advected with the fluid flows inside the
cell (2). This observation suggests that the physical transport by
fluid flows is the key to long-range spatial coordination of cortex
contractions and fluid flows.

Here, we investigate in a tubular geometry the self-organi-
zation of cortex contractions, coupled to a contraction-triggering
chemical which is advected with the flows of the fluid cyto-
plasm. The simple two-component model is unstable toward
self-sustained cortex oscillations as cortex stretching triggers the
increase of the contraction-triggering chemical concentration. A
linear analysis of the model predicts traveling-wave solutions of
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cortex shape and the intrinsic wavelength of the dynamic insta-
bility is derived. In contrast to our analytic prediction, numerical
solutions of the model in a tube with periodic boundaries show
a probabilistic distribution of five different patterns of travel-
ing waves. Although the tube is twice as long as the expected
intrinsic wavelength, in one of these patterns the traveling wave
scales with tube length. Further analysis shows that scaling can be
robustly generated in growing tubes with periodic boundary con-
ditions or by flow-generating boundary conditions in nongrowing
tubes. We identify oscillatory flows as the key to the scaling of
contraction waves with system size. The ubiquity of fluid flows
in biological and nonliving systems suggests that this nontrivial
scaling could be broadly relevant in active matter.

Results
Coupling of Tubular-Shaped Cortex with Contraction-Triggering
Chemical. A cell showing coordinated cytoplasmic fluid flows in
general has a distinctive viscous fluid phase separated from a
surrounding viscoelastic actomyosin cortex. The nature of long-
range flows typically entails a tubular cell shape. We here con-
sider as a minimal model an active, viscoelastic tube of length L,
filled with a fluid. Tube shape is fully defined by the tube’s radius
a (z , t) along the tube’s axial position z and over time t . The
tube’s temporal evolution directly follows from the conservation
of the fluid volume within the tube,

∂a2

∂t
=− ∂

∂z

(
a2ū

)
, [1]

where ū(z , t) denotes the cross-sectionally averaged fluid flow
velocity along the tube. Fluid flow is powered by contractions
of the tube and thus by the stress σ(z , t) =σc +σe acting radi-
ally within the tube’s cross-section (Fig. 1). We distinguish σc,
the contractile stress stemming from actomyosin activity within
the cortex, and σe, the counteracting viscoelastic restoring stress
of the cell. For long slender tubes, a/L� 1, lubrication approx-
imation applies. The Stokes equation for the fluid velocity
simplifies to

ū =− a2

8µ

∂

∂z
(σc +σe), [2]

where µ denotes the dynamic viscosity of the fluid. We approxi-
mate the cell’s material properties to be dominated by a linear

viscoelastic response following a Kelvin–Voigt model with a
small nonlinearity to suppress potential divergences. Abbrevi-
ating radial deformation as ε= [a − a∗]/a∗ with respect to the
constant equilibrium radius a∗, the restoring stress is given by

σe =Eε+κε3 + η
∂ε

∂t
, [3]

where E and η denote the tube’s effective elastic modulus
and viscosity, respectively, and κ is the strength of the nonlin-
ear response. Note that E and η incorporate both the elastic
properties and the thickness of the cell cortex.

In light of the role of calcium in coordinating actomyosin activ-
ity, we describe the strength of the cortex contractile stress to
be proportional to the concentration of a contraction-triggering
chemical c. In addition, contractions may self-amplify as more
actin fibers overlap in a contracted cortex following observations
for low myosin concentrations typical for nonmuscle cells (31,
32). Inversely, overlap decreases in an expanded cortex, reduc-
ing potential contractility. Consequently, the contractile stress is
represented by

σc =σ0
C
C∗

(
1− ε

εσ

)
. [4]

Here, C=πa2c represents the chemical concentration inte-
grated across the cross-section of the cell, C∗ is the equilibrium
concentration, σ0 describes the active tension at equilibrium,
and εσ is the typical deformation for the change in fiber over-
lap to become significant for contractility. The chemical itself
constantly cycles between an inactive state and an active state
in the cytoplasm with release rate pc and capture rate dc . We
assume the amount of inactive chemical to be abundant and
therefore not limiting the dynamics here. Importantly, moti-
vated by our knowledge of calcium regulation by mechanical
deformations (23–26), additional chemical is released at the
cell’s membrane upon cortex stretch with εc denoting the cor-
responding typical deformation scale. Now, we further incor-
porate spatial coupling as we account for the advection and
diffusion of the contraction-triggering chemical. Reflecting the
tubular cell shape we assume the chemical to average out
quickly across the tube’s cross-section by diffusion, with diffu-
sivity D , compared with the advective transport with velocity
ū along the tube of length L, a2ū/DL� 1. This assumption

A B

Fig. 1. Illustration of the model predicting self-sustained contraction waves. (A) A tubular-shaped cell lined with an actomyosin cortex (blue) enclosing
the liquid cytoplasm carrying a contraction-triggering chemical (orange). Chemically controlled contractile cortex stress is balanced by viscoelastic restoring
stress. Small cortex contractions self-amplify as more actin overlaps in a contracted cortex, shown in variations in cortex density. Cortex stretch leads to
inflow of contraction-triggering chemical, allowing for self-sustained oscillations. Contractions are coupled spatially as the chemical is advected with the
cytoplasmic flows (parabolic lines) resulting from cortex deformations. (B) Phase diagram depicting a region of uniform, stationary pattern and oscillatory
patterns.
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warrants the use of Taylor dispersion for a tube of varying
radius (33),

∂C
∂t

= 2πa

[
pc

(
1 +

ε

εc

)
− dc

C
πa2

]
+
∂

∂z

[
−Cū +

(
D +

a2ū2

48D

)
πa2 ∂

∂z

(
C
πa2

)]
. [5]

Here, the 2πa factor in the kinetics term stems from chemical
release at the surface of the tube. Note, that chemical release
in the bulk, i.e., a factor of πa2 instead, does not alter the
model’s dynamics described below (SI Appendix, Linear Stability
Analysis).

Stretch-Activated Chemical Inflow Controls Self-Sustained Oscilla-
tions. At zero fluid flow the tube’s radius is uniformly at its rest
value of a = a∗. Similarly, the chemical concentration is at a
constant value of C ∗=πa∗2pc/dc throughout the tube. This uni-
form state is unstable with respect to small perturbations as a
small deformation of the tube radius grows when the contractile
stress of scale σ0/εσ exceeds restoring stress (Fig. 1B). Thus, the
relative stretch parameterized by εσ drives the short wave insta-
bility of the system. A stretched cortex additionally ignites the
inflow of the contraction-triggering chemical. Chemical inflow
results in contractions, thus decreasing the deformation and ini-
tiating the oscillation. Consistent with this intuitive reasoning,
linear stability analysis shows that the uniform state is unstable
if σ0/εσ is large enough compared with the tube’s elastic mod-
ulus E , diffusion D , and capture rate dc , all factors limiting the
development of fluctuations,

√
σ0
εσ
−E√

16µD

a∗2
+
√

2dcη
a∗

> 1 [6]

(SI Appendix, Instability Condition). The wavelength of the most
unstable mode is given by

λlin =πa∗
√

η
µ

(√
a∗2

(
σ0
εσ
−E

)
Dµ

− 4

)− 1
2

. [7]

The scale of coordinated flows set by this intrinsic wavelength
here arises from the competition between diffusion D and vis-
cosity η, increasing the wavelength by filtering out perturbations
on a short scale, and contractility, amplifying the fluctuations
locally and controlled essentially by σ0/εσ . Approximating µD�
σ0a

∗2

εσ
−Ea∗2, the linear analysis also gives a constraint for an

oscillatory instability√
2σ0

εc

a∗

ηdc
> 1 +

( √
σ0
εσ
−E√

16µD

a∗2
+
√

2dcη
a∗

)2

[8]

(Fig. 1B). The oscillation frequency ω can be derived (SI
Appendix, Eq. S1). The result confirms the intuitive idea that
oscillations occur if the stretch-activated chemical release, con-
trolled by 1/εc , is strong enough to counterbalance the self-
amplifying deformation of the tube. Based on these analytical
results we expect the system to generate spontaneous contractile
waves of a wave size given by the most unstable mode λlin.

Multiple Patterns of Contractions Arise in a Periodic Tube. To study
the self-organization of contractile waves in organisms of vary-
ing sizes, we numerically solve model Eqs. 1 and 5 in tubes of
different lengths L and measure the sizes of the contractile wave
patterns λ (Fig. 2). As model parameters, we choose physiologi-
cal values for calcium kinetics and actomyosin cortex mechanics
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Fig. 2. Contraction wave can scale with tube length. (A and B) Size of self-
sustained contraction waves λ for tubes of different lengths L, for closed (A)
and periodic (B) boundary conditions. Linear stability analysis predicts wave
size to be bound by the intrinsic wavelength of the most unstable mode λlin

(dotted line) as observed numerically for a closed tube. However, wave size
can scale with tube length (arrows in B) for periodic boundary conditions.
Each data point denotes an individual simulation.

(Materials and Methods). Tube radius is chosen to match P. poly-
cephalum—most renowned for scaling contraction waves. The
model is further verified by comparing the numerically observed
phase relationship between fluid flow and contraction-triggering
chemical to experimental data of P. polycephalum (34). The
model predicts the nontrivial change of phase relationship along
the tube (SI Appendix, Fig. S3), robust against changes in model
parameters. Among ambiguous observations on the role of cal-
cium in P. polycephalum (35, 36), complemented by theoretical
models (37), this experimental verification of our model pro-
motes that calcium activates actin–myosin contractions in P.
polycephalum as is common in living organisms.

To determine the size of the waves, we computed the power
spectral density of the radius a(z , t) averaged over 10 oscilla-
tion periods and identified the dominant mode. As “wave size”
λ we denote the inverse of the dominant mode. Note that wave
size is not always equivalent to wavelength, in particular if the
patterns are antisymmetric (see Fig. 3 B and E, for examples of
patterns with different wavelength and equal wave size). Simula-
tions with closed boundary conditions (Fig. 2A) fully match our
expectations from linear stability analysis, namely waves increas-
ing with tube length up to an upper bound given by the intrinsic
wavelength corresponding to the most unstable mode λlin. Sur-
prisingly, in simulations with periodic boundary conditions (Fig.
2B) we observe waves exceeding λlin, scaling with tube length
instead.

Characterizing more precisely the variety of wave patterns,
we screen multiple runs with different initial perturbations, for
the intermediate tube length L= 2λlin, with periodic bound-
ary conditions (Fig. 3 and SI Appendix, Fig. S2). Observed
wave patterns can be divided into five cases, by wave size and
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Fig. 3. Stable wave patterns in a periodic tube twice as large as the intrinsic wavelength L = 2λlin. (A–E) Tube radius (Top) and resulting fluid flow rate
(Bottom) along a tube (horizontal axis) and time (vertical axis). Probability of each pattern in 300 independent runs is denoted above the radius plots.

period-averaged flow rate along the tube (see SI Appendix, Fig.
S6 for details on the identification of the patterns). There are
one, two, or three waves traveling in the same direction (Fig. 3 A,
B, or C, respectively), two antisymmetric waves (Fig. 3E), or two
asymmetric waves (Fig. 3D). The single wave matching tube
length (Fig. 3A) generates the strongest net fluid flow, exceed-
ing unidirectional multiple wave patterns (Fig. 3 B and C) and
asymmetric waves (Fig. 3D). Patterns with antisymmetric waves
(Fig. 3E) do not create a net flow due to their invariance under
space flipping, thus not providing any mass transport or long-
range mixing. Patterns occur with very different probabilities
with only 12% showing the most efficient pattern regarding mix-
ing and transport, where the wave scales with tube length. In
general, net flow and maximum flow increase with wave size
(38) (SI Appendix, Fig. S5), and thus generating waves scaling
with system size is fundamental for organisms whose size varies
vastly. What measures can make this most efficient pattern more
robust? What mechanism drives the scaling of the contractions
with the size of the tube?

Growth of the Tube Leads to the Robust Scaling of the Wave. To
investigate robustness and the mechanism behind the scaling of
contractile waves we performed simulations of growing tubes and
measured wave size for periodic or closed boundaries (Fig. 4).
Tubes grow linearly, starting from 0.2λlin in length.

In agreement with linear stability analysis we find that waves
in tubes with closed boundaries grow with tube length only
up to the upper bound λlin. However, for periodic boundary
conditions, waves scale with the length of the tube up to seven-
fold λlin (Fig. 4). From linear stability analysis the wavelength
λ= 7λlin is an unstable but not oscillating state (SI Appendix,
Fig. S1), suggesting another mechanism beyond linear stability
analysis at play. Above this limit to the scaling Llim, the wave
splits into six or seven smaller waves matching roughly λlin (Fig.
4). Note that while the wave size scales with system size, the
period of contractions barely changes (SI Appendix, Fig. S5), in
accordance with observations (39). Results are robust against
variations in parameters. Particularly, changing the fluid viscosity
µ varies the scaling limit Llim and the factor of mode multi-
plication n =Llim/λlin. Contrary to previous reaction–diffusion
systems capable of mode doubling or tripling when simulated
on growing domains (40), many values of n are accessible; see
SI Appendix, Fig. S7 for n ∈ [5, 8]. From Eq. 7, we can see
that the predicted wavelength scales like λlin∝µ−1/4. On the
other hand, a dimensional analysis of the advective term in
Eq. 5 leads to a typical scale proportional to µ−1/2, consis-
tent with our simulations showing Llim∝µ−0.51 (SI Appendix,

Fig. S7). As λlin and Llim scale differently with viscosity, the
mode-multiplication factor n changes accordingly. Noteworthy,
decreasing the viscosity increased the scaling limit. A lower vis-
cosity does not change any mechanical properties of the tube but
increases the flow velocity and thus advection of the contraction-
triggering chemical. This suggests that flow-driven transport is
crucial for the observed scaling mechanism and the upper scaling
limit.

Scaling of the Wave Is Due to Oscillatory Flows. To distinguish the
role of net flow Jnet and oscillatory flow Josc in establishing the
scaling, we investigated dynamics in tubes with an imposed inflow
of J = Jnet + Josc cos(ωt) on one end of the tube. To limit our
study to a 2D parameter space, we set ω to the natural angu-
lar frequency of our system (SI Appendix, Eq. S1). The values
of Jnet and Josc were chosen to be comparable with the val-
ues generated spontaneously in simulations of periodic tubes (SI
Appendix, Fig. S8).

Imposed flow boundary conditions result in long-range con-
traction patterns (Fig. 5). Interestingly, Jnet and Josc have
different effects on the observed wave size. Contrary to our
expectations, the net flow Jnet has little impact on contraction
wave size. The oscillatory part of the flow Josc, on the other
hand, increases sharply the wavelength for any value of Jnet.
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Fig. 4. Scaling of the contraction wave in growing, periodic tubes. Shown
is wave size λ for tubes with periodic (blue circles) and closed (red dia-
monds) boundaries, grown to different lengths L. While wave size in
closed tubes saturates at λlin (dotted line) as predicted from linear stabil-
ity analysis, waves in tubes with periodic boundaries scale robustly with
tube length up to sevenfold the predicted length (blue vertical line).
Each data point represents an independent run of a tube grown from an
initial L = 0.2λlin.
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Fig. 5. Scaling of wave with system size governed by an oscillatory flow
component at the tube boundary. Shown is a heat map of wave sizes in
tubes of L = 5λlin with an imposed flow J = Jnet + Josc cos(ωt) at one bound-
ary. Full scaling arises at high oscillatory flow Josc almost independent of net
flow Jnet.

Interestingly, the time necessary to establish a stable pattern of
contractions is shorter as the wave size grows (SI Appendix, Fig.
S8). Thus, we find that oscillating flow at the boundary, rather
than net flow, is the key to scaling with system size much beyond
the intrinsic length scale of the instability.

Discussion
We have studied the self-organization of long-range fluid flows in
tubular-shaped cells, due to the coupling of cortex contractions
to an advected, contraction-triggering chemical. Our minimal
two-component model system describing cortex and chemical
dynamics predicts self-sustained contraction waves of wave size
λlin. Numerical simulations of the model confirm these predic-
tions in tubes with closed boundaries. However, in tubes with
periodic boundary conditions we find flows to scale with tube
length much beyond the predicted wave size λlin. Robust scal-
ing is observed when tubes are grown longer than λlin, “mode
multiplying” at a scaling limit Llim =nλlin, n = 6.6. Simulations
of fluids with different viscosities and tubes with imposed inflow
show that the oscillatory flow is the key to this unexpected scaling
on such long length scales.

From a dynamical systems point of view, previous work
accounted for scaling contraction waves only when also the
period of contraction scaled (41), whereas in our mechanism the
period barely changes. Also the observation of mode multiply-
ing at factors of up to 8 vastly exceeds previous observations of
mode doubling or mode tripling (40). Within our model we find
that mode multiplying is determined by the ratio between the
scaling limit Llim and the linearly unstable wavelength λlin. The
impact of the viscosity of the cytoplasm, as an example, was inves-
tigated, and the different scaling with viscosity, λlin∝µ−1/4 and
Llim∝µ−1/2, explained the splitting of the contraction wave to
different modes.

The oscillatory nature of fluid flows allowed by periodic
boundary conditions or by imposed flow is crucial to generate
scaling beyond the intrinsic wavelength λlin (Eq. 7). The value
of the intrinsic wavelength may vary broadly between differ-
ent systems. Assuming our representative parameter values, that
contractility is of the same order as stiffness σ0

εσ
−E ∼E , and

taking into account only that cell elastic modulus and cortex vis-
cosity scale with cortex thickness h over cell radius a∗, a rule
of thumb for the intrinsic wavelength is λlin' 1m

1
2 (ha∗)

1
4 . This

rule of thumb implies that only based on the intrinsic wavelength,
a doubling in system size would requires a 16-fold increase in
radius to allow the intrinsic wavelength to match the doubled
system size. Alternatively, oscillatory flow boundary conditions
are required to allow for scaling with system size beyond the
intrinsic wavelength as the system grows. Given the possible

range of biological parameters, this rule of thumb sets a scale
for the radius over which long-range scaling due to oscillatory
flows is likely to be at work. Note that the scale predicted here is
only a rough estimate as our mechanochemical model accounts
for only the role of calcium and additional cortex regulation
machinery might be important in a specific system (5). Moreover,
measurements of the mechanical and geometrical properties of
the cell cortex show large variations and increase further the
uncertainty. The key insight is that oscillatory fluid flows can
generate scaling contraction waves and that it may be worth
checking for their role in large systems, exceeding the intrinsic
wavelength.

For the system best studied for its cortex-driven cytoplas-
mic flows, P. polycephalum, and with parameter values inferred
from related organisms where necessary (Materials and Meth-
ods), the predicted wave size is λlin = 7.1 mm, about an order
of magnitude smaller than the coordinated contraction waves
observed on scales of up 2 cm (13), but well within the range of
Llim = 4.7 cm, in agreement with our predictions. At these large
scales P. polycephalum forms a network of tubes with more vis-
cous bags pooling fluid at the growing fronts. It is fascinating to
speculate how the network morphology impacts the dynamics of
contractile waves. It is likely that the contractions of the viscous
bags at the growing fronts here do serve as pumps very much sim-
ilar to the imposed flow boundary conditions we implemented.
The growing fronts could thereby also account for the resurrec-
tion of scaling contraction waves after contraction stopped due
to harmful external stimuli (42). In contrast to P. polycephalum
to date detailed quantitative data are lacking in other systems
to allow for quantitative comparison. However, cortex contrac-
tions and oscillatory flows are very general components for many
other systems, even beyond the single cell. Thus, the interplay of
fluid flows and mechanical oscillations resulting in scaling might
be broadly relevant.

In general, our model broadens the budding understanding of
the fundamental role of cytoplasmic flows in a large class of bio-
physical systems (1, 43–45). In very diverse systems, flows appear
to be a fundamental part of a self-organized machinery. In our
case, their oscillations are crucial to drive and organize patterns
of contractions on a large scale, a mechanism likely present in
many other biological systems. More fundamentally, our result
opens perspectives on how including active advection in classical
reaction–diffusion frameworks leads to unexpected observations
such as scaling.

Materials and Methods
Implementation. Numerical solutions of the model equations were explored
with a custom-written Crank–Nicholson scheme implemented in MATLAB
(The Mathworks). Simulations started from the spatially uniform equilib-
rium value for tube radius and chemical concentration. To perturb the stable
state, uncorrelated, Gaussian fluctuations of SD 0.01 were added to the
radius. Three kinds of boundary conditions were implemented: periodic,
closed, or flow. For flow boundary conditions, the radius and the chemical
concentration at the boundaries of the tube are both assumed to be equal
to their value at the uniform equilibrium, and fluid flow is imposed on one
end of the tube. In growing tubes, linear growth is simulated by changing
dynamically the mesh size used for spatial discretization. The mesh is refined
when the length of the tube doubled. The growth rate is small compared
with the contraction period to decouple the dynamics of the system from
growth. When tubes reach their target lengths, simulations are continued
for roughly 200 additional contraction periods to ensure that growth has no
impact on the simulated pattern.

Parameters. Simulations parameters were µ= 1.5× 10−3 Pa·s for the vis-
cosity of the cytoplasm (46), a* = 100 µm for the radius of the viscoelastic
tube, E = 10 Pa for its effective stiffness [assuming a Young’s modulus of
100 Pa (47, 48) and a thickness of the tubes of h = a*/10], η= E× 24s for its
effective viscosity (47, 49, 50), κ= 100E for the nonlinear elasticity, σ0 = 3E
for the active stress (48, 51), D = 3.33× 10−10 m2·s−1 (37, 52) for the diffu-
sion of the tension activator in the cytoplasm, a*c*/(2pc) = a*/(2dc) = 96 s
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(23, 24) for the timescale of its regulation, εc = 0.3 for the threshold of its
stretch-activated supply, and εσ = 2 for the stretch inhibition of the active
stress. The mechanical parameters, particularly κ and εσ , were chosen to
result in deformations of about 10%, typical for P. polycephalum (13). The

resulting flow velocities in our simulations were around ū = 10 µm·s−1 to
30 µm·s−1, matching cytoplasmic flows for P. polycephalum (2).
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