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Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by Karen Winkler for the Degree of

Master of Science and entitled Vicious Walkers in One-body Potentials

Month and Year of Submission: September 2004

This thesis is concerned with the survival probability of one-dimensional vicious

walkers moving in one-body potentials. In particular the backward Fokker-Planck

equation is used to derive the asymptotic form of the survival probability for large

times.

A method is introduced explaining how the survival probability of a single random

walker moving in an attractive one-body potential can be antisymmetrised to obtain

the general survival probability of N vicious walkers moving therein. Using this ap-

proach, exact results are derived for vicious walkers in a square-well potential with

absorbing or reflecting boundary conditions at the walls, and for a harmonic potential

with an absorbing or reflecting boundary at the origin. In addition, by mapping the

problem of vicious walkers in zero potential onto the harmonic potential, the survival

probability of N vicious walkers on a line with or without an absorbing or reflecting

wall at the origin is calculated.

Vicious walkers in an inverted harmonic potential are investigated in the case

of N=3 by mapping the process onto a single random walker in a two-dimensional

absorbing wedge. By this means the survival probability at infinite time is calculated.
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Chapter 1

Introduction

The random walker describing diffusion and Brownian motion is the best known model

of a non-equilibrium stochastic process. Although investigated since the early twen-

tieth century, the random walker model and its various extensions are still part of

today’s research and account for numerous applications in physics and chemistry.

This thesis is concerned with one-dimensional random walkers exhibiting contact

interactions introduced as vicious walkers by M.E. Fisher in 1984 [2]. This model

describes N walkers on a line taking steps at random to the left or to the right with

equal probability. On meeting those random walkers are vicious and eliminate each

other but do not interact otherwise.

Naturally arising from the definition of the vicious walkers model is the question

of the survival probability of all N walkers, i.e. the probability that none of the N

vicious walkers has met another up to a time t, see figure 1.1. This question becomes

even more interesting if the vicious walkers are confined within a potential and sub-

jected to absorbing or reflecting walls which eliminate the walkers or reverse their

direction on contact. In most cases our main interest lies in the asymptotic decay in

time of the survival probability. To this purpose it is convenient to work in continuous

time and space as will be done throughout this thesis.

The remainder of this chapter will introduce the stochastic methods used to calculate

11
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space

time

x x x x x . . .2 3 4 51

Figure 1.1: N vicious walkers on a line

the survival probabilities of random walkers. After a short section about the ran-

dom walker, the Langevin equation will be presented followed by a derivation of the

Fokker-Planck equation or rather the backward Fokker-Planck equation. In addition,

the boundary conditions for absorbing and reflecting walls will be given. To familiarise

the reader with the use of the backward Fokker-Planck equation, some applications

will be examined at the end of this chapter.

In chapter 2, vicious walkers in different attractive one-body potentials will be

investigated. At first, it will be explained how simple results for random walkers can

be extended to give the survival probability of vicious walkers. In the proceeding, this

method will be applied to vicious walkers in a square well and a harmonic potential,

also giving access to vicious walkers in zero potential with or without a wall at the

origin.

In the third chapter, diffusion processes in a two-dimensional wedge will be con-

sidered, giving means to calculate the survival probability of three vicious walkers in

an inverted harmonic potential. At first a review of former work on diffusion processes

in a wedge will be given. To this purpose the survival probability of a single random

walker in a wedge with absorbing boundaries will be calculated. Afterwards a mapping

will be introduced which brings problems of three vicious walkers in correspondence

with a single walker in an absorbing wedge. To explain this mapping the calculation

of the asymptotic survival probability of three vicious walkers on a line with different



Chapter 1. Introduction 13

diffusion constants will be presented. Using this mapping the survival probability of

three vicious walkers in an inverted harmonic potential will be calculated and visu-

alised in the limit of infinite time.

In the last chapter a conclusion of all former results will be presented.

1.1 The random walker

Traditionally the random walker model is introduced on a equispaced lattice. For this

purpose we consider a symmetric walker taking random steps of length l with equal

probability to the left or to the right, where we define a the transition probability per

unit time. Thus the walker arrives on sites x = nl of the lattice, with n integral. After

each step it loses every memory of its former position. Hence the probability p(nl, t)

of the random walker to be at one lattice position x = nl at time t depends only on

the probability that it occupied the nearest neighbour positions (n + 1)l or (n − 1)l

or the position nl itself before. This allows the rate of change of the probability per

unit time dp(nl,t)
dt for a lattice point nl at time t to be written in the intuitive picture

of the Master equation [3]:

dp(nl, t)

dt
= a p(nl + l, t) + a p(nl − l, t) − 2a p(nl, t). (1.1)

The rate of probability is increased by transitions from positions (n +1)l and (n− 1)l

and decreased by transitions out of lattice point nl either to the left or the right, see

figure 1.2. The master equation can be solved by the method of generating function.

n 1 n+1n

d d

d d

Figure 1.2: The rate of probability of a random walker to be at lattice position nl
is increased by transitions from positions (n + 1)l and (n − 1)l and decreased by
transitions out of lattice point nl either to the left or to the right.

For the purpose of this thesis we are more interested in the random walk in

continuous variables x and t. Considering very small lattice spacings l " 1 both

1.1. The random walker
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probabilities p(nl+ l, t) and p(nl− l, t) can be expanded in a Taylor series in the small

parameter l, keeping x = nl:

dp(x, t)

dt
= a

(
p(x, t) +

∂p(x, t)

∂x
l +

1

2

∂2p(x, t)

∂x2
l2

)

+ a

(
p(x, t) − ∂p(x, t)

∂x
l +

1

2

∂2p(x, t)

∂x2
l2

)
− 2a p(x, t) + O(l2). (1.2)

Taking the limit l → 0, x becomes continuous and equation (1.2) turns into the

diffusion equation, where we identify al2 = D as the diffusion constant:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (1.3)

Provided the random walker started at time t = 0 at position x = x0 the solution of

the diffusion equation is given by a normalised Gaussian function centred around x0

with standard deviation σ =
√
〈(x − x0)2〉 =

√
2Dt:

p(x, t|x0, 0) =
1√

4πDt
e−

(x−x0)2

4Dt . (1.4)

Hence the probability density of the random walker is a δ−function with unit magni-

tude at time zero and becomes a Gaussian function for times greater than zero. This

Gaussian function is highly peaked for small times and spreads out as a square root

of time for large times, see figure 1.3.

40 30 20 10 0 10 20 30 40
x

0

0.1

0.2

0.3

0.4

p(
x,
t) t=1

t=10

t=100

Figure 1.3: The Gaussian distribution of probability for a random walker starting at
time zero at x0 = 0 for three different times.

1.1. The random walker
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1.2 A stochastic equation of motion:

the Langevin equation

The Langevin equation was originally introduced to explain Brownian motion, first

observed for pollen grains. Classically Newton’s equation of motion for a pollen grain

in a fluid would include only a friction force mv̇ = −αv due to the loss of momentum

of the particle during collisions. Thus it would describe a decelerating particle, which

is in contrast to the equipartition theorem of statistical mechanics. This states that

the mean kinetic energy of a particle is always greater than zero for temperatures

greater than zero:
1

2
m

〈
v2

〉
=

3

2
kT, (1.5)

where T is the temperature in Kelvin and k is Boltzmann’s constant. To account for

this fact, Langevin added to Newton’s equation of motion for a pollen grain a rapidly

fluctuating random force F(t) [4]:

mv̇ = −αv + F(t). (1.6)

The stochastic force F(t) is very irregular and its average over the ensemble is zero:

〈F(t)〉 = 0. (1.7)

Furthermore, the random force is assumed to be totally uncorrelated, i.e. the average

value of the product of two random forces at different times t and t′ or different

components is zero:

〈Fi(t)Fj(t
′)〉 = qδijδ(t − t′), (1.8)

where i and j indicate components of the vector force F(t). For a measurement time

scale much larger than the microscopic time scale of the collisions, this assumption of

independence is a good approximation to reality. In terms of probability theory, the

differential equation and the force correlator correspond to the Markov assumption,

which states that the conditional probability of a particle moving with velocity v at

time t is fully determined by its initial velocity v0 at time t0. This characteristic is

exhibited by the Langevin equation since it is a first order differential equation, i.e.

1.2. A stochastic equation of motion: the Langevin equation
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only one set of initial conditions is necessary and since the random force is δ-correlated,

forces at times t′ and t are independent [5].

From section 1.1 we already know the mean square displacement of a diffusion

process to be 〈(x − x0)2〉 = 2Dt. For comparison it is also of interest to calculate

the mean square displacement of a Brownian particle. Solving equation (1.6) for the

one-dimensional case, for example by the method of integrating factor, yields:

v(t) = v0e
− α

m t +
1

m

∫ t

0

ds e−
α
m (t−s)F (s), (1.9)

where v0 is the initial velocity at time zero. Integrating this result over time, we get

the position of the particle dependent on time x(t):

x(t) = x0 +
m

α
v0

(
1 − e−

α
m t

)
+

1

α

∫ t

0

ds
(
1 − e−

α
m (t−s)

)
F (s). (1.10)

To obtain the second moments we take the squares of (1.9) and (1.10), respectively.

Evaluating the mean and correlator of the random force F (t) according to (1.7) and

(1.8) results in
〈
v2(t)

〉
=

(
v2

0 −
q

2mα

)
e−

α
m 2t +

q

2mα
(1.11)

and

〈
(x(t) − x0)

2
〉

=
m2

α2

(
v2

0 −
q

2mα

) (
1 − e−

α
m t

)2
+

q

α2

[
t − m

α

(
1 − e−

α
m t

)]
. (1.12)

Hence in the stationary state, i.e. for infinite time, the second moment of the velocity

becomes:
〈
v2(t)

〉
=

q

2mα
. (1.13)

Taking such a stationary state distribution as initial velocity v0 the first term in

equation (1.12) vanishes and the mean square displacement behaves to leading order

in time as
〈
(x(t) − x0)

2
〉

=
q

α2
t, (1.14)

in correspondence to the random walker, where we identify D = q/2α2. Comparing

the mean square velocity in equation (1.13) with the equipartition theorem in one

dimension, we see that q/2α = kT . Summarising, the diffusion constant of Brownian

motion becomes:

D =
kT

α
. (1.15)

1.2. A stochastic equation of motion: the Langevin equation
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This is just the famous Einstein relation [6], which Einstein derived by different means

before Langevin wrote down his equation.

To obtain a first order stochastic differential equation depending on the position of

the pollen grain x the strong damping limit is taken in the original Langevin equation

(1.6). Neglecting the inertial term leads to:

αẋ = F(t).

This equation now describes a stochastic variable, which responds instantaneously

to a random force, which is the case of Brownian motion to a good approximation

and corresponds to the movement of a random walker. We define a Langevin noise

ηi(t) = Fi(t)/α with correlator

〈ηi(t)ηj(t
′)〉 = 2Dijδ(t − t′), (1.16)

where Dij are the entries of a general matrix D. In the case of a single random walker

the different components of the stochastic force are not correlated and the matrix D

is proportional to the identity matrix Dij = Dδij . Hence the correlator for a random

walker is:

〈ηi(t)ηj(t
′)〉 = 2Dδijδ(t − t′). (1.17)

Note that by this definition the mean square displacement of a random walker is just

〈(x − x0)2〉 = 2Dt as we found in section 1.1.

In the following we are interested in N one-dimensional walkers with position

coordinates (x1, x2, . . . , xN ) = x moving in a one-body potential, i.e. each walker

is in the same individual potential. To this purpose conservative forces of the form

Fi(x) = −α ∂
∂xi

V (x) are included, where the index i refers to the force acting on the

ith walker. Hence the equation of motion for the walker i becomes:

ẋi = −∂V
∂xi

+ ηi(t), (1.18)

where the Langevin noise is a Gaussian white noise with zero mean and correlator as

defined above (1.17). This Langevin equation again obeys the Markov assumption.

1.2. A stochastic equation of motion: the Langevin equation
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Of particular importance in later chapters are conservative forces of the form

Fi(x) = −
∑N

i=1 γijxj . Stochastic processes which evolve according to such linear

Langevin equation are called Ornstein-Uhlenbeck processes [7, 8] and for vanishing

matrix (γij = 0) they reduce to a so-called Wiener process [9].

1.3 The Fokker-Planck equations

Instead of working with differential equations for the stochastic variables xi, i =

1, 2, . . . , N one may examine the same process as the evolution of the probability of

all particles being at position x at time t given that they were at initial position x′ at

time t′. The forward Fokker-Planck equation [10, 11], also called forward Kolmogorov

equation [12] or Smoluchowski equation, describes this development of the conditional

probability p(x, t|x′, t′). It can be derived from the Langevin equations (1.18) and

(1.16):

∂p(x, t|x′, t′)

∂t
=

N∑

i=1

∂

∂xi

[
∂V (x)

∂xi
p(x, t|x′, t′)

]
+

N∑

i,j=1

Dij
∂2

∂xi∂xj
p(x, t|x′, t′), (1.19)

where the first term on the right hand side corresponds to drift and the second to

diffusion of probability. The initial condition is given by:

p(x, t = t′|x′, t′) = δ(x − x′). (1.20)

For calculating first passage processes such as survival probabilities the second

Fokker-Planck equation called backward Fokker-Planck equation is more appropriate.

It is termed backward because this differential equation describes the evolution of

probability with respect to the initial variables x′, t′. In order to derive the backward

equation we consider the Langevin equation stated in equation (1.18) with Gaussian

white noise (1.16). Integrating the Langevin equation over time from t = t′ to t =

t′ + ∆t with x′
i = xi(t′) yields [13]:

xi(t
′ + ∆t) = x′

i −
∂V (x′)

∂x′
i

∆t + ηi∆t + O(∆t)2. (1.21)

where ηi∆t denotes the integral over time of the Langevin noise, which has zero mean

1.3. The Fokker-Planck equations
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and correlator
〈
ηi∆tηj∆̃t

〉
= 2Dijmin[∆t, ∆̃t] in correspondence to the Gaussian white

noise.

The conditional probability p(x, t|x′, t′) of the random walker being at position

x at time t given that it started at (x′, t′) is equal to the conditional probability

p(x, t|x(t′+∆t), t′+∆t) that the random walker started at a slightly later time t′+∆t

at a slightly later position x(t′ + ∆t) averaged over the noise η∆t, see figure 2.10.

p(x, t|x′, t′) = 〈p(x, t|x(t′ + ∆t), t′ + ∆t)〉η∆t

By averaging over the noise we take into account all different positions x(t′ + ∆t) at

time t+∆t, which the walker could occupy obeying the Langevin equation. Therefore

all possible ways from (x′, t′) to (x, t) are included.

space

time

t�’

t

x xx’

t�’+    t

   (t�’+    t)

Figure 1.4: The black line shows a way a random walker could take from (x′, t′) to
(x, t), being at a particular position x(t′ +∆t) at time t′ +∆t. But various other ways
are possible, represented by the dash-dotted lines, being at different positions at time
t′ + ∆t. These ways are taken into account by averaging over the noise.

The position at the later initial time t′+∆t is just given by the integrated Langevin

equation (1.21).

p(x, t|x′, t′) = 〈p(x, t|x′ −∇′V (x′)∆t + η∆t, t
′ + ∆t)〉η∆t

+ O(∆t)2

Expanding the right hand side up to order (∆t)2 leads to:

pt′ =

〈
pt′ +

N∑

i=1

[
−∂V (x′)

∂x′
i

∆t + ηi∆t

]
∂pt′

∂x′
i

+
1

2

N∑

i,j=1

ηi∆tηj∆t

∂2pt′

∂x′
i∂x

′
j

+
∂pt′

∂t′
∆t

〉

η∆t

,

1.3. The Fokker-Planck equations
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where pt′ is a shorthand for p(x, t|x′, t′). Evaluating the average by using the mean

and correlator of the integral over time of the Langevin noise yields:

pt′ = pt′ −
N∑

i=1

∂V (x′)

∂x′
i

∂pt′

∂x′
i

∆t +
N∑

i,j=1

Dij
∂pt′

∂x′
i∂x

′
j

∆t +
∂pt′

∂t′
∆t.

Subtracting pt′ from both sides and dividing by ∆t in the last equation results in the

desired backward Fokker-Planck equation:

−∂p(x, t|x′, t′)

∂t′
= −

N∑

i=1

∂V (x′)

∂x′
i

∂p(x, t|x′, t′)

∂x′
i

+
N∑

i,j=1

Dij
∂2p(x, t|x′, t′)

∂x′
i∂x

′
j

. (1.22)

Similar to the forward Fokker-Planck equation the backward Fokker-Planck equation

can be separated into a diffusion term consisting of the second order derivative term

and a drift term represented by the first order derivative term, which is proportional

to the derivative of the potential. Hence any potential causes the walkers to be biased

into a direction depending on their position. Despite this similarity there is an essential

difference between the forward and backward Fokker-Planck equation. The forward

equation describes the evolution of the probability for t > t′ with x′, t′ kept fixed

whereas in the backward equation the final values x, t maintain constant and the

development in t′ < t is observed leading to the final state. This is the reason why

the backward Fokker-Planck equation is an important tool for first passage processes

such as survival probabilities.

Regarding random walkers in an interval with absorbing boundaries at one or

both ends, the survival probability Q(x, t) may be interpreted as the sum over the

probabilities of all final states, at which the walkers are termed to be alive, hence

those inside the interval.

Q(x, t) =

∫

interval

dy p(y, t|x, 0) =

∫

interval

dy p(y, 0|x,−t), (1.23)

where the last equality is valid since the system is homogeneous in time, which is

true as long as the potential is time independent as assumed throughout this thesis

[9]. Clearly the survival probability only depends on the initial values x, t of the

probability p(y, 0|x,−t) and therefore obeys the backward Fokker-Planck equation as

1.3. The Fokker-Planck equations
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stated in equation (1.22) for t′ = −t and x′ = x :

∂Q(x, t)

∂t
= −

N∑

i=1

∂V (x)

∂xi

∂Q(x, t)

∂xi
+

N∑

i,j=1

Dij
∂2Q(x, t)

∂xi∂xj
. (1.24)

In general the survival probability can be defined as the probability that none of the

N walkers has been eliminated up to time t, provided that they started at initial

positions x = (x1, x2, . . . , xN).

The initial condition is Q(x, t = 0) = 1 for x ∈ interval and zero otherwise, which

follows from the initial condition in equation (1.20). While examining the survival

probability of problems, boundary conditions have to be taken into account, which

will be introduced in the next section.

1.3.1 Boundary conditions for the backward Fokker-Planck

equation

The two main types of boundary conditions used in this thesis are absorbing and

reflecting boundaries. Consider a random walker initially confined within a region R

with surface S [9].

absorbing boundary: For S an absorbing boundary the walker is eliminated on

contact. Hence the probability of the walker being on the surface initially is

zero: p(y, t|x, 0) = 0 for x ∈ S. From the definition of the survival probability

in equation (1.23) it follows that also the survival probability is zero at the

surface Q(x, t) = 0 for x ∈ S.

reflecting boundary: In the case of a reflecting boundary at the surface the random

walker cannot penetrate the boundary and hence the rate of change of probability

with respect to the initial coordinates is zero perpendicular to the boundary:
∑N

i,j niDij
∂p(y,t|x,0)

∂xj
= 0, where n is normal to the surface. For N one-dimensional

random walkers this constraint reduces to ∂p(y,t|x,0)
∂xi

= 0 ∀i ∈ N and analogous

for the survival probability ∂Q(x,t)
∂xi

= 0 ∀i ∈ N .

1.3. The Fokker-Planck equations
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1.4 Applications of the backward Fokker-Planck

equation

To illustrate the use of the backward Fokker-Planck equation some applications are

presented in this section also broadening the understanding of the random walker.

At first a random walker in a spherical domain in d dimensions is considered. The

walker is subjected to movements between an inner and an outer shell. Shrinking the

radius of the inner shell to zero and expanding the radius of the outer shell to infinity

the probability of visiting the origin is investigated observing different behaviour for

dimensions greater and smaller than two.

Afterwards the survival probability of a random walker in a harmonic potential

with an absorbing boundary at the origin is calculated giving access to the survival

probability of two vicious walkers in a harmonic potential.

1.4.1 The random walker in a spherical domain

In the interest of examining the probability of visiting the origin Q0(r) for a random

walker in d dimensions we consider at first a random walker between two concentric

spheres, see figure 1.5. For our purpose it is useful to calculate the first passage

probability Q(r) that the random walker hits the inner sphere without having hit the

outer one. In the limit of zero radius for the inner sphere rin and infinite radius for

the outer sphere rout the first passage probability Q(r) corresponds to the probability

of visiting the origin Q0(r).

The first passage probability Q(r) of a random walker between two d dimensional

spheres can be interpreted as the survival probability of the random walker starting

at radius r, rin < r < rout, if we define the outer sphere to be an absorbing boundary,

hence Q(r = rout) = 0, and the inner sphere to be a trap, at which the random walker

is kept alive, therefore Q(r = rin) = 1. For our calculation it is sufficient to examine

the survival probability in the infinite time limit, where the survival probability does

not change with time anymore. For a single random walker in the infinite time limit

subjected to no potential the backward Fokker-Planck equation (1.24) reduces to a

1.4. Applications of the backward Fokker-Planck equation
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out
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Figure 1.5: A random walker between two concentric spheres

simple Laplace equation:

∇2Q(r) = 0. (1.25)

Because of the spherical symmetry only the radial part of the Laplacian is nonzero.

In the general case of d dimensions the Laplacian becomes:

1

rd−1

d

dr

(
rd−1 d

dr

)
Q(r) = 0. (1.26)

The solution to this differential equation is of the form Q(r) = A + B ln r for d = 2

and Q(r) = A + B/rd−2 otherwise, where A and B are constants. Determining these

constants by use of the above boundary conditions yields:

Q(r) =






ln rout
r

ln rout
rin

for d = 2

1−( rout
r )

d−2

1−
(

rout
rin

)d−2 for d *= 2

Now we are able to calculate the limits of rin → 0 and rout → ∞ in order to get

the probability Q0(r) that the random walker visits the origin before it wanders off

to infinity provided it started at position r. We investigate the three different cases

d < 2, d = 2 and d > 2 separately.

d < 2

At first we take the limit of rin → 0, giving:

lim
rin→0

Q(r) = 1 −
(rout

r

)d−2

. (1.27)

1.4. Applications of the backward Fokker-Planck equation
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Since rout > r by the setting of the problem, there is always a finite probability that

the random walker visits the origin. Taking the outer sphere to infinity the probability

to hit the origin before wandering off to infinity becomes Q0(r) = 1. The same result

is obtained if we evaluate the limit rout → ∞ first:

lim
rout→∞

Q(r) = 1. (1.28)

Hence in dimensions smaller than two the random walker will always visit the origin

and by translational symmetry this implies, that the random walker will visit every

point in space. This property of the random walk is called recurrence [14].

d > 2

In the case of dimensions greater than two evaluating the limit of zero radius for the

inner sphere yields:

lim
rin→0

Q(r) = lim
rin→0

(
rin

rout

)d−2

−
(rin

r

)d−2
= 0. (1.29)

Hence independent of the radius of the outer sphere the probability of hitting the

origin is zero Q0(r) = 0. This result also implies that two random walker never meet

in d > 2 dimensions and also in d = 2 dimensions as will be seen in the next section.

Hence it is illogical to define point size vicious walkers in d ≥ 2 dimensions, since their

contact interaction is never applied.

Again the result does not change if the limit of rout → ∞ is taken before rin → 0:

lim
rin→0

lim
rout→∞

Q(r) = lim
rin→0

(rin

r

)d−2
= 0. (1.30)

In general the result states that in dimensions greater than two the random walker is

only visiting a small amount of the total space unlikely to revisit any particular point,

this property is called transience [15, 16].

d = 2

So far Q(r) has been continuous throughout space, therefore interchanging the two

limits for d < 2 and d > 2 did not make any difference. In the marginal case of two

1.4. Applications of the backward Fokker-Planck equation
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dimensions this is not true anymore. The two opposing results are:

lim
rout→∞

lim
rin→0

Q(r) = 0

lim
rin→0

lim
rout→∞

Q(r) = 1 (1.31)

Hence the two dimensional random walker on the continuum is neither transient nor

recurrent.

1.4.2 The random walker in a harmonic potential

In this section we investigate the one-dimensional random walker in a harmonic po-

tential with an absorbing wall at the origin [17]. This example will also be of relevance

as a borderline case for results derived in chapter 2 and 3.

Considering a harmonic potential V (x) = µx2/2 the Langevin equation for the

Ornstein-Uhlenbeck process of one random walker reads:

ẋ = −µx + η(t), (1.32)

where the Langevin noise is the Gaussian white noise as introduced beforehand with

zero mean and correlator 〈η(t)η(t′)〉 = 2Dδ(t− t′). To calculate the survival probabil-

ity of the random walker the corresponding one-dimensional backward Fokker-Planck

equation is the appropriate equation to be solved.

∂Q(x, t)

∂t
= −µx

∂Q(x, t)

∂x
+ D

∂2Q(x, t)

∂x2
(1.33)

Provided that the random walker starts on the positive side away from the origin the

initial condition for the survival probability is: Q(x, t = 0) = 1. Due to the absorbing

boundary at the origin the solution of the differential equation must vanish at x = 0

(Q(x = 0, t) = 0 ∀t). If the random walker is at an infinite distance from the origin,

there is no possibility that it finally reaches the wall and gets eliminated in finite

time, therefore the survival probability for the walker starting at infinity is set to one

(Q(x = ∞, t) = 1 ∀t). The backward Fokker-Planck equation with those initial and

boundary conditions can be solved by mapping it to the diffusion equation by defining

[18]

τ =
1

2µ

(
1 − e−2µt

)
z = xe−µt.

1.4. Applications of the backward Fokker-Planck equation
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Hence the differential equation becomes

∂Q(z, τ)

∂τ
= D

∂2Q(z, τ)

∂z2
,

where the boundary conditions have been preserved, i.e. Q(z = 0, τ) = 0 ∀τ and

Q(z = ∞, τ) = 1 ∀τ . The solution to the diffusion equation with the given boundary

conditions is well known, expressed in the initial coordinates the solution is given by:

Q(x, t) = Erf

(
e−µt

√
2D(1 − e−2µt)

√
µx

)

, (1.34)

where Erf(x) = 2√
π

∫ x

0 du e−u2
is the error function. For large times the survival prob-

ability decays exponentially with time, Q(x, t) ∼ xe−µt.

This result also describes the survival probability of two one-dimensional vicious walk-

ers in a harmonic potential. Each vicious walker obeys a Langevin equation of form

(1.32) for coordinates x1 and x2, respectively, with x1 ≤ x2. Introducing the relative

coordinate x12 = x2 − x1 and ‘relative noise’ ξ(t) = η2 − η1 leads to the Langevin

equation of a single random walker:

ẋ12 = −µx12 + ξ(t), (1.35)

where now the noise has zero mean and correlator 〈ξ(t)ξ(t′)〉 = 4Dδ(t − t′). Hence

substituting 2D instead of D in equation (1.33) gives the analogous backward Fokker-

Planck equation. Since the vicious walkers annihilate on meeting, the survival proba-

bility has to be zero for x1 = x2, i.e. x12 = 0, whereas at infinite distance from each

other the vicious walkers will definitely survive, hence Q(x12 = ∞, t) = 1. These are

just the same boundary conditions as in the case of a single random walker with an

absorbing boundary at the origin. Therefore the survival probability of two vicious

walkers in a harmonic potential is given by solution (1.34), with 2D instead of D:

Q(x, t) = Erf

(
e−µt

√
4D(1 − e−2µt)

√
µx

)

, (1.36)

and decays for large times as

Q(x12, t) ∼ x12e
−µt. (1.37)

1.4. Applications of the backward Fokker-Planck equation
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Vicious walkers in an attractive

potential

In this chapter we derive exact results for the asymptotic form of the survival proba-

bility Q(x, t) of N one-dimensional vicious walkers moving in an attractive one-body

potential. Defining the variables (x1, . . . , xN ) = x as the initial positions of the vi-

cious walkers we use the backward Fokker-Planck equation to compute explicit results

for a square-well potential with absorbing or reflecting boundary conditions at the

walls, and for a harmonic potential with an absorbing or reflecting boundary at the

origin and the walkers starting on the positive half line. By mapping the problem of

N vicious walkers in zero potential onto the harmonic potential problem, we derive

known results for vicious walkers on an infinite line and on a semi-infinite line with an

absorbing wall at the origin. This mapping also provides means to derive a new result

for vicious walkers on a semi-infinite line with a reflecting boundary at the origin.

2.1 Introduction

On introducing the model of vicious walkers Fisher and Huse [2, 19] determined the

survival probability for N vicious walkers moving on an infinite line. For large times,

Q(x, t) decays as a power:

Q(x, t) ∼ t−
N(N−1)

4 . (2.1)

27
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Interesting results also arise when further conditions are imposed on the movement of

the vicious walkers by the use of absorbing or reflecting walls, where all walkers are

initially located on the same side of the boundary (the case where there are walkers

on both sides decouples into two independent problems). While Fisher [2] found the

survival probability of vicious walkers with an absorbing boundary at the origin only

for N = 2, Krattenthaler et al. [20] were able to determine the exact asymptotic form

for N vicious walkers starting from equi-spaced lattice points:

Q(x, t) ∼ t−
N2

2 . (2.2)

By evaluating the scaling limit Katori and Tanemura [21] showed that this asymptotic

behaviour holds for arbitrary initial positions on a continuous line. These results were

found even earlier by Forrester [22] by generalising Fisher’s approach to the case of N

random walkers.

In this chapter we consider the interesting problem of N vicious walkers moving in an

attractive one-body potential v(x), i.e. the full potential function has the separable

form V (x) =
∑N

i=1 v(xi). Treating both time and space as continuous, we investigate

the survival probability of N vicious walkers with equal diffusion constants D. The

equation of motion for walker i is taken to be

ẋi = −∂V
∂xi

+ ηi(t), (2.3)

where the Langevin noise ηi(t) is a Gaussian white noise with mean zero and correlator

〈ηi(t)ηj(t
′)〉 = 2Dδijδ(t − t′). (2.4)

For a square-well potential of width L we consider three different combinations of

absorbing and reflecting walls and find an exponential decay for the survival probability

of the general form Q(x, t) ∼ e−θN t. For two reflecting walls the exponent θN is

determined to be

θRR
N = D

π2

L2

N(N − 1)(2N − 1)

6
. (2.5)

In the case of one reflecting and one absorbing wall we obtain

θRA
N = D

π2

L2

N(2N + 1)(2N − 1)

12
, (2.6)

2.1. Introduction
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while for two absorbing walls the exponent of the asymptotic decay is:

θAA
N = D

π2

L2

N(N + 1)(2N + 1)

6
. (2.7)

An interesting potential, which turns out to be a powerful tool, is the problem of N

vicious walkers in the harmonic potential V (x) = a
2x

2. The asymptotic behaviour

for large times is determined to be an exponential decay independent of the diffusion

constant:

θN =
N(N − 1)

2
a. (2.8)

This result also provides a mechanism to determine the survival probability of N

vicious walkers on an infinite line in a simple way. By mapping the zero-potential

problem to the harmonic potential problem, we derive Fisher’s result [2] and also the

result by Forrester and Krattenthaler et al [22, 20] with an absorbing wall at the origin.

Furthermore, we are able to obtain, to our knowledge, a new result for the survival

probability of N vicious walkers on a semi-infinite line with a reflecting boundary at

the origin [1, 23], which decays as:

Q(x, t) ∼ t−
N(N−1)

2 . (2.9)

This chapter is organised as follows. In the first section the method for a general

one-body potential v(x) is presented, while in the second section explicit results for

square-well and harmonic potentials are given. Afterwards the case of zero potential is

revisited, obtaining the known results, and a new result for a system with a reflecting

boundary, through a transformation to the harmonic problem. At the end a short

conclusion is given.

2.2 The method

The dynamics of a random walker, with position coordinate xi, moving in a potential

V (x) is described, in continuous space and time, by the Langevin equation (2.3) with

noise correlator (2.4).

2.2. The method
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The probability Q(x, t) that all N vicious walkers, i = 1, . . . , N , have survived

up to time t, given that they started at {xi}, satisfies the corresponding backward

Fokker-Planck equation:

∂Q(x, t)

∂t
= D

N∑

i=1

∂2

∂x2
i

Q(x, t) −
N∑

i=1

∂V (x)

∂xi

∂Q(x, t)

∂xi
. (2.10)

For convenience we start by defining the survival probability q(xi, t) of just one random

walker moving in a potential restricted by the imposed boundary conditions. This

survival probability q(xi, t) satisfies the backward Fokker-Planck equation

∂q(xi, t)

∂t
= D

∂2

∂x2
i

q(xi, t) −
dv(xi)

dxi

∂q(xi, t)

∂xi
, (2.11)

where we have used the relation V (x) =
∑

i v(xi) for a one-body potential. For

any such potential, the backward Fokker-Planck equation (2.11) is separable in time

and space. Let us call these separable solutions, i.e. the solutions of equation (2.11)

satisfying the relevant boundary conditions, single-walker basis functions. They have

the form qj(xi, t) = uj(xi) exp(−λjt), where λj is the decay rate associated with basis

function j, and these rates are ordered such that λ1 < λ2 < λ3 . . ..

For N non-interacting walkers moving in the same potential, the N -walker basis

functions for the survival probability take the form of products of N single-walker

functions, each with a different space variable xi. Since, however, we are investigating

vicious walkers the mutual annihilation property must be respected. Since two walkers

die when arriving at the same x-coordinate, the boundary condition Q(x1, . . . , xn, t) =

0 when xi = xj for any i *= j must be respected. This property is ensured by

constructing Q(x, t) using antisymmetric combinations of products of N single-walker

functions, analogous to the antisymmetric construction of the wavefunction of fermions

[2]. The N -walkers basis functions of the vicious walkers problem with N walkers have,

therefore, the form

Qi1,...,iN (x, t) = det Ai1,...,iN , (2.12)

where the elements of the N × N matrix A are given by

Ai1,...,iN
nm = qin(xm, t). (2.13)

2.2. The method
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The full solution Q(x, t) is a linear superposition of these basis functions with coeffi-

cients determined by the initial condition.

To solve the problem of N vicious walkers in an arbitrary potential, therefore,

we need to find the single-walker basis functions qj(xi, t) appropriate to the imposed

boundary conditions, introduced in chapter 1. For an absorbing boundary at x = a

the functions qj(xi, t) must satisfy

qj(xi = a, t) = 0. (2.14)

For a reflecting boundary at x = b the boundary condition for the backward Fokker-

Planck equation is in the one-dimensional case:

dqj

dxi

∣∣∣
xi=b

= 0. (2.15)

Clearly these boundary conditions are also satisfied by the functions Qi1,...,iN (x, t),

since the latter is just an antisymmetrised product of single-walker basis functions.

Consider now the late-time limit, t → ∞. Each antisymmetrised product in the

expression for Q(x, t) contains N different relaxation factors exp(−λjt). The slowest-

decaying term in the sum, therefore, is the term in which the relaxation rates are

λ1, λ2, . . . , λN . It follows that, asymptotically,

Q(x, t) ∝ det B1,2,...,N exp(−θN t), (2.16)

where B1,2,...,N is just the N × N matrix with elements Bnm = un(xm) (n, m =

1, . . . , N), i.e. it is constructed using the N slowest-decaying single-walker basis func-

tions, and the total decay rate is

θN =
N∑

j=1

λj . (2.17)

The following sections provide some applications of this general result.

2.3 Results for vicious walkers in a potential

In this section we discuss two examples of N vicious walkers in a potential and deter-

mine the decay of the survival probability Q(x, t).

2.3. Results for vicious walkers in a potential
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2.3.1 The square-well potential

Consider a square-well potential which has two walls of infinite potential, one at the

origin and the other at x = L, and vanishes between the walls. A vicious walker

restricted to move between the walls satisfies the backward Fokker-Planck equation:

∂q(xi, t)

∂t
= D

∂2q(xi, t)

∂x2
i

. (2.18)

This equation can be solved in general by separation of variables, which amounts in

this case to writing the solution as a spatial Fourier series. Different solutions result

from the various sets of boundary conditions imposed by the property of the walls.

Two reflecting walls

For two reflecting walls the spatial derivative of q(xi, t) must be zero at x = 0 and

x = L. In this case, therefore q(xi, t) is given by Fourier cosine series with basis

functions

qn(xi, t) = exp

(
−n2π2Dt

L2

)
cos

(π
L

nxi

)
, n = 0, 1, . . . (2.19)

The survival probability is constructed as a superposition of antisymmetrised products

of these basis functions:

Q(x, t) =
∑

i1

· · ·
∑

iN

Ci1,...,iN det Ai1,...,iN

=
∑

i1

· · ·
∑

iN

Ci1,...,iN exp

(
−π

2Dt

L2

N∑

n=1

i2n

)

× det Bi1,...,iN , (2.20)

where

Bi1,...,iN
nm = cos

(π
L

inxm

)
. (2.21)

To evaluate the long-time behaviour we keep only the N longest-lived modes, given by

the N smallest values, i = 0, 1, . . . , N −1 of in. Using
∑N−1

i=0 i2 = N(N −1)(2N −1)/6

we obtain, for the asymptotic time-dependence,

Q(x, t) ∼ exp

(
−π

2Dt

L2

N(N − 1)(2N − 1)

6

)
. (2.22)

2.3. Results for vicious walkers in a potential
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One reflecting and one absorbing wall

For an absorbing wall at the origin and a reflecting wall at x = L the boundary

conditions are satisfied by a Fourier sine series with basis functions:

qn(xi, t) = exp

(
−(2n + 1)2π2Dt

4L2

)

× sin
( π

2L
(2n + 1)xi

)
, n = 0, 1, . . . (2.23)

Analogous to the preceding case the survival probability for all N vicious walkers is

constructed and the asymptotic survival probability for large time is evaluated using
∑N−1

i=0 (2i + 1)2 = N(2N + 1)(2N − 1)/3 to give the asymptotic decay

Q(x, t) ∼ exp

(
−π

2Dt

L2

N(2N + 1)(2N − 1)

12

)
. (2.24)

Two absorbing walls

In the case of two absorbing walls the basis functions have to vanish at both x = 0

and x = L. A Fourier sine series is therefore appropriate, with basis functions

qn(xi, t) = exp

(
−n2π2Dt

L2

)
sin

(π
L

nxi

)
, n = 1, 2, . . . (2.25)

This is very similar to the result for two reflecting boundaries, except that the spatial

functions are sines so the sum begins with n = 1. The large-time behaviour of Q(x, t)

is given by

Q(x, t) ∼ exp

(
−π

2Dt

L2

N(N + 1)(2N + 1)

6

)
. (2.26)

Before proceeding to the harmonic potential, we note that the inequalities 2N(N −

1)(2N − 1) < N(2N + 1)(2N − 1) < 2N(N + 1)(2N + 1), for all N ≥ 1, imply that

for a well of given size the decay is fastest with two absorbing boundaries and slowest

with two reflecting boundaries, as is intuitively clear.

2.3.2 The harmonic potential

A harmonic potential V (x) = a
2x

2 is considered for which the backward Fokker-Planck

equation for the single-walker basis function reads

∂q(xi, t)

∂t
= D

∂2

∂x2
i

q(xi, t) − a xi
∂q(xi, t)

∂xi
. (2.27)

2.3. Results for vicious walkers in a potential
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This equation can be transformed into an imaginary-time Schrödinger equation by the

substitution q(xi, t) = exp(ax2
i /4D)ψ(xi, t) to give

∂ψ(xi, t)

∂t
= D

∂2

∂x2
i

ψ(xi, t) +

(
a

2
− a2x2

i

4D

)
ψ(xi, t). (2.28)

This equation has solutions of the form ψ(xi, t) = e−λtu(xi), where u(xi) satisfies the

ordinary differential equation

(
D

d2

dx2
i

+

(
a

2
− a2x2

i

4D

))
u(xi) = −λu(xi). (2.29)

This equation is equivalent to the time-independent Schrödinger equation for the har-

monic oscillator. The eigenvalues and eigenfunctions of this eigenvalue problem are

well known: see for example a similar problem in reference [24]. The eigenfunctions

have the form

un(xi) = Hn

(
xi

√
a

2D

)
exp(− a

4D
x2

i ), (2.30)

where the functions Hn(x) are the Hermite polynomials defined by

Hn(y) = (−1)ney2 dn

dyn
e−y2

. (2.31)

The corresponding eigenvalues are λn = na, where n = 0, 1, 2, . . . . The original basis

functions q(xi, t) are given by qn(xi, t) = Hn

(
xi

√
a

2D

)
exp(−λnt).

Applying the antisymmetrisation process to determine the survival probability of

N vicious walkers in a harmonic potential we obtain the asymptotic time dependence:

Q(x, t) ∼ exp

(
−at

N−1∑

i=0

i

)
(2.32)

giving

Q(x, t) ∼ exp

(
−at

N(N − 1)

2

)
. (2.33)

This result can be checked in the case N = 2 with the full solution for the sur-

vival probability of two vicious walkers in a harmonic potential derived in section 1.4.2.

Using the method of antisymmetrised basis functions the asymptote of the survival

probability Q(x1, x2, t) of two vicious walkers with initial positions x1 and x2, respec-

tively, where x1 ≤ x2, is given by the antisymmetrised product of the two slowest

2.3. Results for vicious walkers in a potential
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decaying basis functions: Q(x1, x2, t) = q0(x1, t)q1(x2, t)− q1(x1, t)q0(x2, t). Substitut-

ing the solution of the basis functions for the harmonic potential yields:

Q(x1, x2, t) ∼ e−at

[
H0

(
x1

√
a

2D

)
H1

(
x2

√
a

2D

)
− H1

(
x1

√
a

2D

)
H0

(
x2

√
a

2D

)]
,

(2.34)

where the first two Hermite polynomials are defined as H0(x) = 1 and H1(x) = 2x.

Introducing the relative coordinate x12 = x2 − x1 gives the survival probability for

large times:

Q(x12, t) ∼ x12e
−at. (2.35)

This solution is equivalent to the former result in section 1.4.2.

The general solutions for N vicious walkers in a harmonic potential can readily

be extended to the case where there is a reflecting or absorbing boundary at x = 0

and all the walkers start on the same side of the boundary (if there are walkers on

both sides, the problem decouples into two independent problems). For a reflecting

boundary, the boundary condition u′(0) = 0 selects only the even-numbered Hermite

polynomials, n = 0, 2, 4, . . ., and

Q(x, t) ∼ exp

(
−at

N−1∑

i=0

2i

)

= exp[−at N(N − 1)] (reflecting wall). (2.36)

For an absorbing boundary, the boundary condition u(0) = 0 selects the odd-numbered

Hermite polynomials to give

Q(x, t) ∼ exp

(
−at

N∑

i=1

(2i − 1)

)

= exp[−at N2] (absorbing wall). (2.37)

In the following section we show how these results can be used to compute the sur-

vival probability of N vicious walkers in zero potential, with and without an absorbing

or reflecting wall, by mapping the problem back to the oscillator problem.
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2.4 Vicious walkers on a line

Here the case of N vicious walkers restricted by no potential is investigated. This

problem can be solved in a quite simple way by mapping it to the problem of N vicious

walkers in a harmonic potential and using the previous results. Again, we consider

the Langevin equation (2.3), but with V (x) = 0, and let all N vicious walkers start

to move at time t = t0. We introduce the following mapping from x, t to the new

coordinates X, T by [25, 26]:

X =
x√
2Dt

, t = t0 eT . (2.38)

Then the Langevin equation (2.3) transforms to

dXi(T )

dT
= −1

2
Xi(T ) + ξi(T ), (2.39)

where ξi(T ) =
√

t0/2D eT/2 ηi(t0 eT ) is a Gaussian white noise with mean zero and

correlator

〈ξi(T )ξj(T
′)〉 = δijδ(T − T ′). (2.40)

The corresponding backward Fokker-Planck equation in the new coordinates is

∂Q(X, T )

∂T
=

1

2

N∑

i=1

∂2

∂X2
i

Q(X, T ) − 1

2

N∑

i=1

Xi
∂Q(X, T )

∂Xi
(2.41)

where the space coordinates are now the starting points of the vicious walkers, given

by:

Xi(T = 0) =
xi(t0)√
2Dt0

. (2.42)

In the new coordinates this problem looks identical to the harmonic potential problem

with a = 1/2 and D = 1/2. Hence the asymptotic (in time) solution for the survival

probability of N vicious walkers is, according to our previous results,

Q(X, T ) ∼ exp

(

−T

2

N−1∑

i=0

i

)

det BH , (2.43)

where (BH)nm = Hn−1(Xm/
√

2) and n, m = 1, . . . , N . Mapping back to the original

coordinates (x, t) leads to the asymptotic survival probability

Q(x, t) ∼
(

t

t0

)− 1
2

∑N−1
i=0 i

det BL, (2.44)
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where (BL)nm = Hn−1(xm/2
√

Dt0), with n, m = 1, . . . , N . The determinant det BL is

proportional to the Vandermonde determinant [2]: det BL = (Dt0)−N(N−1)/4
∏

i<j |xi−

xj |, and all t0-dependence drops out, as it must, to give the long-time behaviour

Q(x, t) ∼ t−
N(N−1)

4 . (2.45)

which is just the result Fisher obtained [2]. But our approach to the problem also gives

a simple way to obtain expressions for the survival probability for N vicious walkers

with an absorbing or reflecting wall at the origin (and all walkers starting on one side

of the wall).

The essential arguments have been given in the preceding subsection. For an

absorbing (reflecting) boundary, only the odd (even) basis functions contribute. Note

first that the Fisher result (2.45) follows immediately from (2.33) on setting a = 1/2

and T = ln(t/t0). The detailed discussion above was given mainly to show how the

arbitrary scale t0 drops out. To obtain the asymptotic results for a reflecting or

absorbing wall at the origin, we can simple make the same replacements in equations

(2.36) and (2.37) respectively. For the absorbing boundary, we recover the result of

Krattenthaler et al. [20]:

Q(x, t) ∼ t−
N2

2 (absorbing wall), (2.46)

while for a reflecting wall we obtain

Q(x, t) ∼ t−
N(N−1)

2 (reflecting wall). (2.47)

The latter is, to our knowledge, a new result.

Shortly after the paper including this new result was submitted for publication

we learnt that it had been obtained independently, using a different method, by M

Katori and H Tanemura [23].

As a final comment we note that the case where the absorbing or reflecting wall

moves, with a displacement xw = ct1/2, is also amenable in principle to exact analysis.

The change of variable (2.38) maps the problem to one where the N walkers move in a

harmonic oscillator potential, and the absorbing or reflecting wall is at a fixed position

in the new coordinates. This problem has been analysed for a single walker [27, 28, 29],
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and the survival probability decays as t−θ, where the exponent θ is found to vary

continuously with the amplitude, c, of the wall displacement. The same qualitative

features will be present for N vicious walkers. For a reflecting (R) or absorbing (A)

boundary, one will obtain a decay exponent θR,A = N(N − 1)/4 + fR,A(c, N), where

fR,A(−∞, N) = 0, corresponding to a rapidly receding wall, which will be equivalent

to no wall at all, and fR(0, N) = N(N − 1)/4, fA(0, N) = N(N + 1)/4 corresponding

to a static wall at the origin.

2.5 Summary

In this chapter we have derived the exact asymptotes for the survival probability

of vicious walkers moving in a square well potential and a harmonic potential with

various combinations of absorbing and reflecting walls. The results for a harmonic

potential have been used to find the properties of free vicious walkers (zero potential)

through a change of variables, and a new result obtained for the case of a single

reflecting boundary. Comparing all results for each potential one recognises that

the survival probability decays faster when the number of walls is increased, with

absorbing walls causing a faster decrease than reflecting walls, in accordance with

intuitive expectations.

2.5. Summary



Chapter 3

Vicious walkers in an inverted

harmonic potential

In this chapter we derive the exact form of the survival probability of three vicious

walkers in an inverted harmonic potential in the limit of infinite time. To obtain this

result we map the problem of three one-dimensional vicious walkers to a single random

walker in two-dimensional wedge, where the single random walker is eliminated on

hitting the boundaries of the wedge. To illustrate the mapping diffusion processes

in a two-dimensional wedge are introduced, reviewing known results for the survival

probability of a random walker in a wedge and three one-dimensional vicious walkers

with different diffusion constants.

3.1 Introduction

The geometry of a two-dimensional wedge with absorbing boundaries has proved to be

of interest in itself and as a mean to study one-dimensional interacting random walks.

The survival probability of a random walker in a wedge decays as a power law

where the exponent only depends on the opening angle Θ of the wedge (Figure 3.1):

Q(x, y, t) ∼ t−
π
2Θ (3.1)

This is due to the absence of other characteristic length or time scales in the wedge

39



Chapter 3. Vicious walkers in an inverted harmonic potential 40

with boundaries infinite in radius [14].

(x,y)

Figure 3.1: A random walker diffusing in a wedge with absorbing boundaries and
opening angle Θ.

To solve complicated diffusion processes of interacting walkers like vicious walk-

ers in one-dimension the stochastic process in one-dimension is mapped onto the two-

dimensional wedge, where the wedge boundaries correspond to the interaction inter-

faces [30, 31]. By this means Fisher and Gelfand [31] calculated the survival probability

of three vicious walkers on a line with different diffusion constants. The probability

that all three vicious walkers with initial positions x1, x2, x3 and diffusion constants

D1, D2, D3 have survived up to time t decays for large times t as Q(x1, x2, x3, t) ∼ t−θ,

where

θ =
π

2 cos−1

[
D2√

(D1+D2)(D2+D3)

] . (3.2)

The problem of N vicious walkers with different diffusion constants remains intractable

for N ≥ 4. Krapivsky and Redner extended Fisher’s idea to the lion and lamb problem,

in which lions eliminate the lamb on contact but are indifferent among each other

[32, 33].

In our new problem we calculate the infinite time survival probability of three

one-dimensional vicious walkers with identical diffusion constants moving in an in-

verted harmonic potential by mapping the problem to a diffusion process in a wedge.

In terms of the relative coordinates of the three walkers y1 = x2 −x1 and y2 = x3 −x2

the infinite time survival probability can be expressed as an infinite sum over confluent

hypergeometric functions of the first kind. Graphs are presented giving the infinite

time survival probability for all relative initial positions of the three vicious walkers.

3.1. Introduction
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The outline of this chapter is as follows. First the survival probability of a random

walker in a two-dimensional wedge will be investigated by use of scaling concepts.

Afterwards the one-dimensional random processes are considered. In section 3.3.1

a review of three vicious walkers with different diffusion constants is given. In sec-

tion 3.3.2 explicit results for the infinite time survival probability of vicious walkers

in an inverted potential are presented.

3.2 Random walker in a wedge

In this section we calculate the asymptotic decay of the survival probability of a

diffusion process in a wedge with absorbing boundaries. Our derivation is based on

a very elegant method introduced by Burkhardt [34] which uses scaling properties to

derive the behaviour of stochastic processes for large times.

To model a diffusion process we consider a two-dimensional random walker in a

wedge of opening angle Θ that evolves according to the Langevin equation:

ẋi = ηi(t), i = 1, 2, (3.3)

where ηi(t), i = 1, 2, is a Gaussian white noise with zero mean and correlator 〈ηi(t)ηj(t′)〉

= 2Dδijδ(t − t′). To calculate the survival probability Q(x1, x2) the corresponding

backward Fokker-Planck equation is examined. In accordance to the symmetry of the

problem, polar coordinates (r, ϕ) are chosen. In those variables the boundary condi-

tions reduce to Q(r, ϕ = 0) = 0 and Q(r, ϕ = Θ) = 0. Since the random walker moves

in zero potential the backward Fokker-Planck equation is just the diffusion equation:

∂Q(r, ϕ, t)

∂t
= D

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
Q(r, ϕ, t). (3.4)

All terms on the right hand side of this equation have dimensions D
r2 and the term on

the left hand side has dimension 1
t , hence we obtain r2 ∼ Dt. If we choose z = r2/Dt as

our dimensionless scaling variable the number of independent variables of the survival

probability is reduced to two:

Q(r, ϕ, t) = Q
(

r2

Dt
, ϕ

)
. (3.5)

3.2. Random walker in a wedge
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Since we are expecting a power law decay for large times of the form t−θ, the survival

probability must have an asymptotic behaviour as:

Q(r, ϕ, t) ∼
(

r2

Dt

)θ

F (ϕ), (3.6)

for large times t.

Inserting (3.6) in the backward Fokker-Planck equation (3.4) gives:

− θ

Dt
F (ϕ) =

2θ(2θ − 1)

r2
F (ϕ) +

2θ

r2
F (ϕ) +

1

r2

∂2

∂ϕ2
F (ϕ). (3.7)

Obviously the term on the left hand side is of order 1/Dt and is, therefore, subdomi-

nant in the large time behaviour. Omitting this term the differential equation for the

function F (ϕ) becomes:

4θ2F (ϕ) +
∂2

∂ϕ2
F (ϕ) = 0. (3.8)

To find a solution satisfying the given boundary conditions we select the sine modes:

F (ϕ) =
∞∑

n=1

An sin(2θnϕ), (3.9)

where θn = nπ
2Θ .

For the large time behaviour we are only interested in the first, slowest decaying

mode, n = 1. Hence the survival probability for a random walker in an absorbing

wedge of opening angle Θ decays as

Q(r, ϕ, t) ∼ t−
π
2Θ . (3.10)

Note that the survival probability for Θ = 2π, an absorbing half-line, decays as t−1/4.

This problem has also been investigated in three dimensions, i.e. a random walker

in an absorbing cone [14]. In the limit of small opening angles the survival probability

also decays as a power law, with a power proportional to the inverse of the opening

angle. However, in the limit of large opening angle this is not true anymore and in the

case of opening angle equal to 2π the survival probability is even finite. This example

just shows a transition between recurrence and transience of a random walk. In two

dimensions a random walker will always a hit an absorbing half-line, whereas in three

dimensions there is a finite probability that it does not.

3.2. Random walker in a wedge
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3.3 One-dimensional problems solved in the wedge

Problems of three one-dimensional interacting random walkers are accessible by map-

ping the process to a single random walker in an appropriately chosen two-dimensional

wedge. For this purpose the individual coordinates of the three walkers x1, x2 and x3

are regarded as the coordinates of a single random walker in three dimensions, which

are projected down to a two-dimensional wedge in the space of relative coordinates

[14]. The wedge boundaries correspond to the interacting interfaces.

At first the well-studied problem of three vicious walkers on a line [30, 31, 32, 33]

will be investigated, followed by the new problem of three vicious walkers in an inverted

harmonic potential.

3.3.1 Vicious walkers with different diffusion constants

We consider three vicious walker moving on a line with initial positions x1, x2, x3 and

different diffusion constants D1, D2 and D3. To obtain the asymptotic behaviour of

the survival probability for large times t, the process is mapped onto the diffusion of

a single random walker in a two-dimensional wedge, with an opening angle Θ, that

depends on the ratio of the diffusion constants. Since the survival probability of a

single random walker is known to decay as Q(x, y, t) ∼ t−
π
2Θ , see equation (3.10),

calculating the opening angle is sufficient to solve the problem.

All three vicious walkers are still alive if they retain their ordering x1 < x2 < x3.

By choosing isotropic coordinates defined by yi = xi/
√

Di this constraint can also

be written as y1

√
D1 < y2

√
D2 < y3

√
D3. Interpreting the isotropic coordinates yi,

i = 1, 2, 3, as the three-dimensional coordinates of a single random walker, the single

walker stays alive if it does not hit one of the planes given by:

y1

√
D1 = y2

√
D2, y2

√
D2 = y3

√
D3. (3.11)

These two plane intersect, including a wedge in which the single random walker is

diffusing, see figure 3.2. To obtain the opening angle of this wedge the unit normals

3.3. One-dimensional problems solved in the wedge
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Figure 3.2: The intersection of the two absorbing planes creates a wedge of opening
angle Θ in which the single random walker diffuses.

n̂12 and n̂23 to the planes y1

√
D1 = y2

√
D2 and y2

√
D2 = y3

√
D3 are computed [14, 31]:

n̂12 = (−
√

D1,
√

D2, 0)/
√

D1 + D2 (3.12)

n̂23 = (0,−
√

D2,
√

D3)/
√

D2 + D3 (3.13)

The angle φ included by the unit normals corresponds to an opening angle Θ = π−φ.

Hence evaluating the scalar product of the unit normals gives the opening angle:

Θ = cos−1

[
D2√

(D1 + D2)(D2 + D3)

]

, (3.14)

and so the survival probability decays as Q(x1, x2, x3, t) ∼ t−θ with θ defined by:

θ =
π

2 cos−1

[
D2√

(D1+D2)(D2+D3)

] . (3.15)

A full solution of the survival probability is given by Fisher and Gelfand [31].

The result for the exponent θ in equation (3.15) can easily be checked with special

cases of results in chapter 2. For three vicious walkers with equal diffusion constants

the above exponent reduces to θ = 3/2, which corresponds to the solution of equation

(2.45) in section 2.4, θ = N(N − 1)/4 and N = 3. Also setting x1 = 0 and D1 = 0

with D2 = D3 gives a familiar result from section 2.4. This is the case of N = 2

vicious walkers on one side of an absorbing wall at the origin, as solved for N walkers

in equation (2.46): θ = N2/2 = 2. In the case of x2 = 0 and D2 = 0 the problem

decouples into two independent vicious walkers with an absorbing wall at the origin,

yielding a power law decay with exponent: θ = 2(N2/2) = 1 for N = 1.

3.3. One-dimensional problems solved in the wedge
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3.3.2 Vicious walkers in an inverted potential

After reviewing the concept and ideas of the two-dimensional wedge, we now consider

the new problem of three one-dimensional vicious walkers, with initial coordinates

x1 < x2 < x3, in an inverted harmonic one-body potential, v(xi) = −a
2x

2
i , with

a positive. By mapping this process onto a single random walker in a wedge with

absorbing boundaries, we calculate the infinite time survival probability Q(x1, x2, x3).

In an inverted harmonic potential the vicious walkers are subjected to a drift, which

separates them, therefore, there is a non-zero survival probability for large times.

The equation of motion of each random walker is taken to be:

ẋi = axi + ηi(t), i = 1, 2, 3, (3.16)

where ηi(t) is a Gaussian white noise with zero mean and correlator 〈ηi(t)ηj(t′)〉 =

2Dδijδ(t − t′). Mapping this process onto a single two-dimensional random walker in

a wedge, we introduce relative coordinates y1 = x2 −x1, and y2 = x3 −x2. This single

random walker now obeys the following equation of motion:

ẏj = ayj + ξj , j = 1, 2, (3.17)

where ξj is the ‘relative’ Gaussian white noise defined by ξ1 = η2−η1 and ξ2 = η3−η2.

The mean is zero as beforehand but the correlator now becomes

〈ξi(t)ξj(t′)〉 =





4Dδ(t − t′) for i = j

−2Dδ(t − t′) for i *= j

To determine the infinite time survival probability of the single two-dimensional ran-

dom walker we consider the time-independent backward Fokker-Planck equation in

the initial coordinates y1, y2:

a

(
y1
∂

∂y1
+ y2

∂

∂y2

)
Q(y1, y2) + 2D

(
∂2

∂y2
1

+
∂2

∂y2
2

− ∂2

∂y1∂y2

)
Q(y1, y2) = 0. (3.18)

The variables are chosen to be dimensionless by rescaling ỹi = yi

√
a/2D, i = 1, 2.

Since vicious walkers annihilate on meeting, the survival probability of the single

random walker must vanish at ỹ1 = 0 and ỹ2 = 0 corresponding to the absorbing

boundaries of a wedge with opening angle Θ = π/2, in which the single random

3.3. One-dimensional problems solved in the wedge



Chapter 3. Vicious walkers in an inverted harmonic potential 46

walker is diffusing, see figure 3.3. If the vicious walkers are infinitely far apart, the

survival probability should be unity, hence Q(ỹ1 = ∞, ỹ2) = Q(ỹ1, ỹ2 = ∞) = 1.

In order to reduce equation (3.18) to a canonical form, a change of variables is

required. Introducing the new variables u and v according to

ỹ1 =
u +

√
3v

2
ỹ2 =

u −
√

3v

2
, (3.19)

transforms equation (3.18) to:
[
u
∂

∂u
+ v

∂

∂v
+
∂2

∂u2
+
∂2

∂v2

]
Q(u, v) = 0. (3.20)

The absorbing boundaries in the new variables u and v are at v = ±
√

3u. Therefore,

2

1

3

u

vy

y

Figure 3.3: The transformation to a canonical differential equation maps the right
angled wedge in (y1, y2) coordinates to an axisymmetric wedge of opening angle Θ =
π/3.

in the new variables the wedge is axis-symmetric about the u-axis and has an opening

angle of Θ = π/3, see figure 3.3. Because of the symmetry of the wedge, polar

coordinates (r, ϕ) are appropriate. Hence the time-independent backward Fokker-

Planck equation becomes:
[
∂2

∂r2
+

1

r2

∂2

∂ϕ2
+

(
1

r
+ r

)
∂

∂r

]
Q(r, ϕ) = 0. (3.21)

The boundary conditions reduce to Q(r, ϕ = π/6) = Q(r, ϕ = −π/6) = 0 and

Q(r = 0, ϕ) = 0 at the absorbing boundaries of the wedge and Q(r = ∞, ϕ) = 1

corresponding to the survival of all vicious walkers if they are initially at infinite

distance from each other.
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The partial differential equation (3.21) can be solved by separation of variables

Q(r, ϕ) =
∑∞

n=1 AnRn(r)Φn(ϕ), where the angular part Φn(ϕ) is a cosine mode satis-

fying the angular boundary conditions:

Φn(ϕ) = cos(3(2n − 1)ϕ), (3.22)

and the An are constant coefficients to be determined by the boundary conditions.

Substituting the result for Φn(ϕ) in (3.21) yields the following ordinary differential

equation for Rn(r).

r2R′′
n(r) +

(
r + r3

)
R′

n(r) − 9(2n − 1)2Rn(r) = 0 (3.23)

By setting r2 = ζ and Rn(r) = ζ3n− 3
2ρn(ζ) this differential equation is transformed

into, see 2.215 in reference [35]:

ζρ′′n(ζ) +

(
1

2
ζ + 6n − 2

)
ρ′n(ζ) +

6n − 3

4
ρn(ζ) = 0. (3.24)

This ordinary differential equation is related to the confluent hypergeometric dif-

ferential equation, see 2.273(9) in reference [35]. Defining ζ = 2σ and ρn(ζ) =

exp(−σ)ψn(σ) equation (3.24) reduces to the confluent hypergeometric differential

equation, also called Kummer’s equation [35, 36]

σψ′′
n(σ) + (6n − 2 − σ)ψ′

n(σ) −
(

3n − 1

2

)
ψnσ) = 0. (3.25)

The solutions of this differential equation are known. The general solution can be

written in terms of Kummer’s function of the first M(a, b, z) and second kind U(a, b, z)

also denoted confluent hypergeometric functions of the first and second kind [36]

ψn(σ) = BnM

(
3n − 1

2
, 6n − 2, σ

)
+ CnU

(
3n − 1

2
, 6n − 2, σ

)
, (3.26)

where Bn and Cn are constants to be determined by the boundary condition. Substi-

tuting all former transformations, the result for Rn(r) is:

Rn(r) = r6n−3e−
r2

2

[
BnM

(
3n − 1

2
, 6n − 2,

r2

2

)
+ CnU

(
3n − 1

2
, 6n − 2,

r2

2

)]
.

(3.27)
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The particular solution we are looking for has to vanish at r = 0 and approach a

constant value for r → ∞ to obey the boundary conditions. The confluent hyper-

geometric function of the first kind is unity when its argument is zero, M(a, b, z =

0) = 1, whereas the hypergeometric function of the second kind approaches infinity

limz→0 U(a, b, z) = limz→0 z1−b = ∞, for b integer greater than unity [37], which is

the case in our solution, b = 6n − 2, since n is an integer greater zero. Hence setting

Cn = 0 the solution vanishes at r = 0.

Now we investigate the behaviour of our solution in the limit r → ∞. The

asymptote of the hypergeometric function of the first kind for large arguments z → ∞

is [38]:

M(a, b, z) ∝ Γ(b)

Γ(b − a)
(−z−a)

(
1 + O

(
1

z

))
+

Γ(b)

Γ(a)
ez(za−b)

(
1 + O

(
1

z

))
. (3.28)

Hence the radial solution approaches a constant value for r → ∞:

lim
r→∞

Rn(r) = 23n− 3
2

Γ(6n − 2)

Γ(3n − 1/2)
. (3.29)

To simplify the fitting to the boundary condition Q(r = ∞, ϕ) = 1 we define the

constant Bn as the inverse of the limit value in equation (3.29). This way the radial

part of the solution Rn(r) approaches 1 in the limit of r → ∞. Determining the

coefficients An of the solution Q(r, ϕ) given in equation by imposing Ψ(ϕ) = 1 in the

limit r → ∞ for ϕ ∈ (π/6,−π/6) yields:

An =
4

π

1

2n − 1
sin

(
2n − 1

2
π

)
. (3.30)

Finally we simplify the radial solution by use of Kummer’s formula [36]:

ezM(a, b,−z) = M(b − a, b, z) (3.31)

Hence the solution for the infinite time survival probability of our single random walker

in a wedge is in the dimensionless variables (r, ϕ):

Q(r, ϕ) =
∞∑

n=1

2−3n+ 7
2

Γ(3n − 1/2)

π(2n − 1)Γ(6n − 2)
sin((2n − 1)π/2) cos(3(2n − 1)ϕ)

× r6n−3M

(
3n − 3

2
, 6n − 2,−r2

2

)
. (3.32)
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This sum is easily shown to converge since the summand an decays to zero faster

than 1/n for n → ∞. For large n the confluent hypergeometric function can be ap-

proximated by an exponential function, M
(
3n − 3

2 , 6n − 2,−r2

2

)
∝ exp(−r2/4). The

asymptotic form of the quotient of gamma functions is found to be Γ(3n−1/2)/Γ(6n−

2) ∝ 2−3n+1(6n−3)−3n+3/2e3n−3/2 using Stirling’s formula. In summary, the summand

decays to zero for large n as

an ∝ 2−6n+9/2

(2n − 1)π
(6n − 3)−3n+3/2r6n−3e3n−3/2e−r2/4, (3.33)

where the oscillating sine and cosine functions have been omitted. Although the sum

clearly converges, the computational equipment was not sufficient to calculate the sum

in general or at specific points. Therefore, all plots of the solution to be displayed here

are only approximations including the first thirty terms of the sum, which is sufficient

in the chosen range, since, for instance, the error due to the absence of the next ten

terms, up to term 40, is smaller than 5 × 10−37.

To plot and analyse the infinite time survival probability we transform the solution

back to the dimensionless relative coordinates ỹ1 and ỹ2 of the three vicious walkers.

In those coordinates the result reads:

Q(ỹ1, ỹ2) =
∞∑

n=1

(−1)n+123n+ 1
2

Γ(3n − 1/2)

π(2n − 1)Γ(6n − 2)

(
1

3
(ỹ2

1 + ỹ1ỹ2 + ỹ2
2)

)3n−3/2

× cos

[
3(2n − 1) arctan

(
ỹ1 − ỹ2√
3(ỹ1 + ỹ2)

)]

× M

(
3n − 3

2
, 6n − 2,−2

3
(ỹ2

1 + ỹ1ỹ2 + ỹ2
2)

)
. (3.34)

In figure 3.4 this function is sketched in the range ỹ1, ỹ2 ∈ [0, 8]. The survival proba-

bility smoothly increases from zero at ỹ1 = 0 and ỹ2 = 0 to form a plateau of constant

probability for ỹ1 > 2 and ỹ2 > 2 that increases to unity at ỹ1 = ∞ and ỹ2 = ∞,

corresponding to certain survival, if all three vicious walkers start infinitely far apart.

Unfortunately Mathematica could not calculate the sum for ỹ1 → 0 and ỹ2 → 0, but

the summand of equation (3.34) clearly approaches zero for ỹ1 → 0 and ỹ2 → 0. This

is obvious, since the hypergeometric function of the first kind is finite at zero, the

cosine is always well-defined and summand is proportional to ỹ1 and ỹ2.

3.3. One-dimensional problems solved in the wedge
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Figure 3.4: The infinite time survival probability of three vicious walkers in an inverted
harmonic potential versus the dimensionless relative coordinates ỹ1 =

√
a/2D(x2−x1)

and ỹ2 =
√

a/2D(x3 − x2).

To study the survival probability further, it is also of interest to consider the

contour lines of figure 3.4 as shown in figure 3.5.

Investigating those one easily recognises that the function is symmetric about the

ỹ1 = ỹ2 axis, i.e. for say ỹ1 = c, c an arbitrary constant, Q(ỹ1 = c, ỹ2) is given by the

same function as Q(ỹ1, ỹ2 = c).

Setting one relative coordinate to a constant value physically means keeping two

of the three vicious walkers at a fixed distance to each other while the third is diffusing

freely. Hence the problem is the same for fixing the distance of the first two walkers

or the last two walkers, i.e. ỹ1 or ỹ2, respectively. Furthermore, in the limit of setting

one relative coordinate to infinity, say ỹ2 = ∞, the three walkers problem simplifies

to the problem of two vicious walkers in an inverted harmonic potential. The survival

probability of two vicious walkers in a general harmonic potential V (x) = µx2/2 has

been calculated in section 1.4.2. Setting µ = −|a| in the solution (1.36) and taking

3.3. One-dimensional problems solved in the wedge
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ỹ2

Figure 3.5: Contour lines of the infinite time survival probability of three vicious
walkers in an inverted harmonic potential versus the relative coordinates ỹ1 =√

a/2D(x2−x1) and ỹ2 =
√

a/2D(x3−x2). The different lines correspond to constant
probabilities of 0.1 up to 0.8.

the limit of infinite time, the result for the survival probability of two vicious walkers

is in dimensionless variables:

Q(ỹ1, ỹ2 = ∞) = Erf(
ỹ1√
2
). (3.35)

Unfortunately showing this limiting behaviour analytically has proved to be in-

tractable. Instead we plotted Q(ỹ1, ỹ2 = c) for c = 2, 3, . . . , 10, see figure 3.6. The

figure clearly shows how the sequence of graphs approaches the error function (red)

expected for ỹ2 = ∞, see equation (3.35). All graphs starting from c = 4 lie exactly

on top of the error function, proving the limiting behaviour.

3.4 Summary

In this chapter we used the interesting features of diffusion in a wedge to solve the prob-

lem of three vicious walkers in an inverted harmonic potential. In a review explaining

the properties of the wedge, we derived the asymptote of the survival probability of

3.4. Summary
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Figure 3.6: The infinite time survival probability of three vicious walkers in an in-
verted harmonic potential keeping the relative coordinate ỹ2 = c fixed at c=2(black),
c=3(blue) and c=4(red), where the red graph is already indistinguishable from the
error function (3.35).

a random walker in an absorbing wedge by use of scaling properties. In addition, the

problem of diffusion of three vicious walkers in one dimension has been mapped onto

a diffusion process of a single random walker in a wedge. Although this mapping only

enables us to solve problems with three interacting walkers, very complicated problems

such as vicious walkers with different diffusion constants are solvable in a very elegant

way as has been shown. Finally, the mapping has been applied to a new problem, to

calculate the infinite time survival probability of three vicious walkers in an inverted

harmonic potential.

3.4. Summary



Chapter 4

Conclusion

In this thesis the backward Fokker-Planck equation has been used to investigate the

properties of vicious walkers especially concerning motion in one-body potentials. Ex-

act results for the asymptotic or limiting form of the survival probability of vicious

walkers have been obtained.

In chapter 2 the main interest lay in attractive one-body potentials. We intro-

duced a method to generalise results for the survival probability of a single random

walker in an arbitrary attractive potential to obtain the survival probability of N vi-

cious walkers in such a potential. This method of antisymmetrising has been applied

to obtain the asymptotic form of the survival probability of N vicious walkers in a

square-well potential with absorbing or reflecting boundary conditions at the walls,

and in a harmonic potential with or without an absorbing or reflecting boundary at

the origin. The results for the harmonic potential have been used to calculate the

problem of N vicious walkers on a line restricted by an absorbing or reflecting wall at

the origin by mapping the zero potential case onto the harmonic potential.

Chapter 3 concerned three vicious walkers in an inverted harmonic potential. To

solve this problem diffusion processes in a two-dimensional wedge have been investi-

gated. By mapping the problem of three one-dimensional vicious walkers in an inverted

harmonic potential onto the diffusion of a single random walker in a two-dimensional

wedge, we obtained their survival probability in the limit of infinite time.

In summary, various problems concerning vicious walkers in one-body potentials

53
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have been addressed giving exact results for the time-dependence of the analysed

processes and the limiting probability distribution.
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