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Memory capacity of adaptive flow networks

Komal Bhattacharyya ,1 David Zwicker,1 and Karen Alim 1,2,*

1Max Planck Institute for Dynamics and Self-Organisation, 37077 Göttingen, Germany
2Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences,

Technische Universität München, 85748 Garching, Germany

(Received 4 August 2022; accepted 9 February 2023; published 30 March 2023)

Biological flow networks adapt their network morphology to optimize flow while being exposed to external
stimuli from different spatial locations in their environment. These adaptive flow networks retain a memory
of the stimulus location in the network morphology. Yet, what limits this memory and how many stimuli can
be stored are unknown. Here, we study a numerical model of adaptive flow networks by applying multiple
stimuli subsequently. We find strong memory signals for stimuli imprinted for a long time into young networks.
Consequently, networks can store many stimuli for intermediate stimulus duration, which balance imprinting
and aging.
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I. INTRODUCTION

Biological flow networks, such as vasculature [1], fungal
mycelium [2], or slime mold [3,4], optimize their function by
remodeling the network morphology in response to internal
and external stimuli [3,5–10]. In particular, the slime mold
Physarum polycephalum reorganizes its network morphology
during foraging and migration [11,12], or as responses to envi-
ronmental influences [13], by adapting tubes to flow [8,9,14].
Although the organism only consists of a single cell, it pro-
cesses information [8,9,15–18] and stores memory of external
stimuli in the network morphology [13,19]. Yet, the infor-
mation processing capabilities of Physarum in particular, and
adaptive flow networks more generally, are so far unclear.

The self-organized information processing of Physarum is
reminiscent of other physical learning systems [20]: Phys-
ical networks can be trained to have unusual mechanical
properties [21,22] and functionalities [23,24], either by mod-
ifying microscopic properties by global optimization [25]
or as local responses [26]. Such networks can also learn
multiple states [27], which is key for obtaining multifunc-
tionality [27] and multistability [28–37] in physical systems,
and for performing complex tasks such as image classifi-
cation [38–40] using such physical networks. The multiple
states can be either imprinted simultaneously [27] or learned
subsequently [38]. In both cases, there is a maximal number
of states that can be learned, which is the learning capacity of
the system [27,38].
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Although memory is essential for learning [20], the mem-
ory capacity of flow networks remains relatively unexplored.
Here, we investigate this question theoretically by analyz-
ing memory in a model of adaptive flow network, which is
subjected to various external stimuli, similar to natural flow
networks [41,42]. We identify that a stimulus is stored more
robustly, and can thus be retrieved more easily, when networks
are young and are exposed to a stimulus for a long time. Since
these two criteria are incommensurable for multiple stimuli,
a trade-off determines the memory capacity of these adaptive
flow networks.

II. MODEL

We use the standard model for adaptive flow networks that
minimizes energy dissipation, for a fixed network building
material [1,43–47]. These flow networks are modeled as a
graph of Nnodes nodes connected by links i j, where i, j ∈
{1, . . . , Nnodes}. The links have length li j and time-dependent
conductances Ci j (t ). We consider a network of cylindrical
hollow tubes with conductances Ci j = πri j (t )4/8μli j accord-
ing to Hagen-Poiseuille’s law, where ri j is the radius of the
tube and μ is the viscosity of the enclosed fluid. In our
case, node i = 1 serves as the sole outlet, while all other
nodes are inlets, following models of flow networks in plants
and animals [45–47]. The inlets are modeled with fluctu-
ating inflows qi(t ), which are either qi = 0 or qi = 2q(0)

with equal probability. These switchlike fluctuations repre-
sent inflow fluctuations observed in both plants [45,48] and
animals [7,49–51]. Conservation of total flow implies q1(t ) =
−∑

i>1 qi(t ). We chose a disk-shaped network geometry with
the outlet in the center to maximize symmetry; see Fig. 1(a).
Conservation of flow at every node, described by Kirchhoff’s
law, then uniquely determines the flow Qi j (t ) in all links,
given the entire network’s conductances Ci j (t ) and the inflows
qi(t ); see the Supplemental Material [52], Sec. I. The adaptive
dynamics follow from the assumption that networks minimize
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FIG. 1. Stimulus locations are retained in previously stimulated networks. (a) Schematic of adaptive flow networks with a central outlet (red
square), fluctuating inflows at all other nodes, and additional inflow for stimuli (blue filled circles). The temporal sequence shows snapshots of
the training protocol, where N stimuli (purple boxes) are applied sequentially by stimulating for a period t train

n followed by relaxation period
twait
n for each stimulus. Finally, the last stimulus is probed (pink unfilled circles) to determine the signal SN according to Eq. (4). (b) SN as a

function of the training time t train
n = t train

pre and waiting time twait
n = twait

pre for most stimuli (n < N) with N = 5. (c) SN as a function of t train
pre and

N for twait
pre = 5δt . (d) SN as a function of twait

pre and N for t train
pre = 5δt . (a)–(d) Model parameters are t train

N = 10δt , twait
N = 5δt , Nnodes = 1100,

qadd = 2000 q(0), q(0) = 1, K = 1600, and T = 30δt . Data show mean from 1500 independent simulations.

dissipation [1],

E (t ) =
∑
<i j>

Qi j (t )2

Ci j (t )
, (1)

while obeying the constraint

K 1
2 =

∑
〈i j〉

Ci j (t )
1
2 l

3
2

i j , (2)

where K 1
2 is proportional to the fixed overall volume of all

links. We follow an iterative relaxation algorithm [44,45],
where the conductances at the next time step, Ci j (t + δt ),
adapt to minimize E (t ) while obeying Eq. (2), implying

Ci j (t + δt ) = K〈Qi j (t )2〉
2
3
T( ∑

〈i j〉〈Qi j (t )2〉
1
3
T li j

)2
li j

, (3)

where we average the flow over a duration T , 〈Q2
i j〉T , since the

inflows at every node fluctuate over time.
To probe for memory, we initiate networks with conduc-

tances Ci j chosen uniformly from the interval [0, 1], which
are then rescaled, so they obey the constraint given by Eq. (2).
We then stimulate the networks using an additional inflow qadd

at the outer rim at a specific angular location; see Fig. 1(a).

Such stimuli are comparable to stimuli used when observing
memory in Physarum [13]. We distribute the additional inflow
over a few nodes to avoid artifacts from the symmetries of the
underlying networks. The adaptation dynamics then imprint
the stimulus in a treelike structure from the nodes of addi-
tional inflow to the centered outlet [19]; see Fig. 1(a). Once
the additional inflow is withdrawn, networks return to seem-
ingly isotropic morphologies. Yet, when probing networks by
reapplying an additional load at exactly the same location,
the power loss of previously stimulated, and thus trained,
networks, Etrained, is distinctively less than if probed at any
other location; see the Supplemental Material [52], Sec. II. In
particular, Etrained is less than the power loss Euntrained for prob-
ing untrained networks that evolved for the same total time,
but did not see the stimulus [19]. To quantify this memory, we
established the normalized difference in power loss between
trained and untrained networks as a measure of the memory
readout signal S [19],

S = 1 − 〈Etrained〉
〈Euntrained〉 , (4)

where brackets indicate ensemble averages over initial con-
figurations and positions of the additional loads; see the
Supplemental Material [52], Sec. II. We used this quantifica-
tion to show that freshly initiated networks memorize single
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stimuli in the spatial location and orientation of the vanishing
links [19]. The stimulus can be read out by probing the net-
work again after the stimulus is withdrawn. Yet, it is unclear
how well already stimulated networks can store stimuli and
whether networks can store multiple stimuli simultaneously.

III. RESULTS

A. Prestimulated networks can memorize stimuli

We start by asking whether previously evolved networks
can store a stimulus reliably. We evolve networks with a
stimulation protocol by consecutively applying N stimuli, dis-
tinguished by the angle of the additional inflow. We choose the
angles randomly from 10 possibilities, {0, π

5 , . . . , 9π
5 }, and we

set the angular range of each stimulus to π
6 to avoid stimuli

overlap. Starting with a randomly initialized network, we ap-
ply one stimulus after the other. The nth stimulus is imprinted
on the network by iterating Eq. (3) with the additional load
corresponding to the stimulus for a duration t train

n and then
without load for a duration twait

n . Taken together, the network
evolves to time

t age
n =

n∑
m=1

(
t train
m + twait

m

)
, (5)

after the nth stimulus has been applied.
To test whether a stimulated network can memorize an

additional stimulus, we apply N − 1 stimuli with identical
properties and then probe the signal of a final stimulus; see
Fig. 1(a). We thus have t train

n = t train
pre and twait

n = twait
pre for n <

N , while the final stimulus can have different parameters. The
signal SN quantifies the dissipation difference of applying the
N th stimulus, analogously to Eq. (4). For constant parameters
of the prestimulation protocol, we observe that SN increases
with t train

N and decays with twait
N ; see the Supplemental Mate-

rial [52], Sec. III. This behavior closely resembles memory
formation in a freshly initiated network [19], even though here
we use prestimulated networks.

We next test the influence of the precise prestimulation
protocol by varying the number of applied stimuli, N , the
training time t train

pre , and the relaxation time twait
pre . Figures 1(b)–

1(d) show that the signal SN of the final stimulus decreases
when increasing any of these parameters, so the prestimu-
lation protocol affects how well additional memories can be
stored. However, our simulations demonstrated that prestimu-
lated adaptive networks can store information about additional
stimuli.

B. Memory capacity reduces with age

We next investigate how the prestimulation protocol affects
the memory of the final stimulus. Since information about
stimuli locations is stored in the orientation and location of
irreversibly decaying links [19], we first determine how the
microstructure of the network evolves with time. Figure 2(a)
shows that the average fraction of vanishing links saturates
exponentially with time (independent of the choice of fluctua-
tions of inflows; see the Supplemental Material [52], Sec. IV),
which suggests that the memory capacity of adaptive flow net-
works decreases with the time t age

N−1, given by Eq. (5), that the

FIG. 2. Memory signal of final stimulus reduces with network
age. (a) Fraction of vanishing links (blue symbols) as a function of
network iterations averaged over 80 independent runs. Model param-
eters Nnodes, qadd, q(0), and T as given in Fig. 1. Red line indicates an
exponential fit. (b), (c) Signal SN of final stimulus as a function of
age t age

N−1 before stimulus was applied. (b) and (c) show the data of
Fig. 1(b) and Fig. 1(c), respectively. Blue lines indicate exponential
fits.

network evolved for before the stimulus is applied. Replotting
the memory signal SN of the final stimulus as a function of
t age
N−1 leads to a data collapse for various values of N , t train

pre , and
twait
pre ; see Figs. 2(b) and 2(c). The two panels differ in whether

N [Fig. 2(b)] or twait
pre [Fig. 2(c)] are kept fixed while the other

parameters are varied. In both cases, the data collapse is well
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FIG. 3. Signal S1 of first stimulus increases with training time and decreases with network age. (a) Snapshots of network, which is subjected
to the first stimulus for t train

1 , relaxed for twait
1 , and then N − 1 stimuli are applied with t train

n = t train
post and twait

n = twait
post (n > 1, dotted box), until

the first stimulus is probed. (b) S1 as a function of t train
1 for N = 5 and t train

post = 5δt . (c) S1 as a function of t age
post = t age

N − t train
1 for various N at

t train
1 = 10δt . (b),(c) Blue lines indicate exponential fits. Parameters are twait

1 = twait
post = 5δt and are as given in Fig. 1.

described by an exponential decay,

SN
(
t age
N−1

) ≈ S∞
N + AN exp

(
− t age

N−1

τpre

)
, (6)

where τpre ≈ 52 δt denotes the timescale, with which prestim-
ulation reduces the memory capacity of the final stimulus. The
maximal memory capacity, S∞

N + AN ≈ 0.22 for t age
N−1 = 0,

is significantly larger than the residual capacity, S∞
N ≈ 0.03,

consistent with the fact that prestimulation of the networks
reduces the memory capacity. The fact that the exponential de-
cay adequately describes the decreasing capacity suggests that
only the total duration of prestimulation is important, while
the details of the protocol are irrelevant; see the Supplemental
Material [52], Sec. V. Consequently, younger networks allow
for a larger memory signal of the final stimulus.

C. Training time dominates signal of first stimulus

To retain multiple memories, adaptive networks need to
store information about all stimuli. We thus next investigate
how information about earlier stimuli is retained and par-
ticularly focus on the first stimulus. To investigate the first
stimulus in detail, we change the protocol to control the train-
ing parameters of the first stimulus separately from all the
other stimuli; see Fig. 3(a). For simplicity, we use identical
parameters for the other stimuli, t train

n = t train
post and twait

n = twait
post

for n = 2, ..., N . The network is probed at the same location

as the first stimulus to obtain the memory signal S1 of the
first stimulus. Figure 3(b) shows that S1 increases with the
training time of the first stimulus, t train

1 , and approaches zero
for t train

1 = 0. S1 again shows an exponential saturation,

S1
(
t train
1

) ≈ B1

[
1 − exp

(
− t train

1

τtrain

)]
, (7)

where τtrain is the training timescale and B1 denotes the maxi-
mal signal for t train

1 → ∞. Similar to our previous work [19],
longer training leads to a stronger signal.

We next investigate how the signal of the first stimulus
depends on subsequently applied stimuli. Figure 3(c) indi-
cates that S1 decays as the networks evolve further, similar
to our previous study [19]. We find that S1 only depends
on the duration of evolution after the first training period,
t age
post = t age

N − t train
1 , and not the precise details of the protocol.

Moreover, S1 again decays exponentially,

S1
(
t age
post

) ≈ S∞
1 + A1 exp

(
− t age

post

τpost

)
, (8)

where the coefficients have the same interpretation as in
Eq. (6). Our fits indicate that τpost ≈ τpre, consistent with an in-
trinsic timescale of memory formation. Note that the residual
memory capacity S∞

1 ≈ 0.1 is large, implying that subsequent
training does not affect the signal very strongly. This is
consistent with the picture that memory is stored by vanishing
links that cannot be revived; see analytical and numerical
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FIG. 4. Memory capacity depends on stimulation protocol parameters. (a) Numerically obtained signals Sn for all N = 5 stimuli as
functions of training times t train and waiting times twait . (b) Analytical prediction of Sn given by Eq. (9) for all stimuli as functions of t train

and twait for N = 5. (c) Fraction of stimuli with strong signal (Sn > 0.04) as a function of t train and N for twait = 5δt . (d) Number of stimuli
with Sn > 0.04 as a function of t train and twait for N = 5. (e) Minimal signal minn Sn of N = 5 stimuli as a function of t train and twait . (a)–(e)
Model parameters are as given in Fig. 1.

observations of the transitions phase between stimuli in
the Supplemental Material [52], Secs. VI and VII. Taken
together, we find that adaptive flow networks can store
multiple memories.

D. Trade-off between age and training time
limits memory capacity

We found that stimuli are imprinted most strongly when
they are trained for a long time on a young network. These
goals of long training times and young networks are con-
tradictory for late stimuli which require young age for a
strong signal, suggesting there must be a trade-off for best
performance of imprinting multiple stimuli. We, thus, next
investigate the memory capacity of networks, defined as the
maximal number of different stimuli that can be imprinted
and retrieved. To quantify memory capacity, we consider N
nonoverlapping stimuli with identical stimulation parameters,
t train
n = t train and twait

n = twait for n = 1, ..., N . We now also
probe all stimuli locations to obtain a signal Sn for each
stimulus. Figure 4(a) shows data for five stimuli as a function
of t train and twait. We recover that the signal S1 of the first

stimulus mainly depends on the training time t train and is
barely affected by the subsequent dynamics. Conversely, the
signal of all other stimuli decreases with network age, i.e.,
with increasing t train and twait. In particular, mid-timed stimuli
have the weakest signals, suggesting that they are affected by
both prestimuli aging as well as subsequent degradation.

We next develop an analytical prediction of the signal of all
stimuli, motivated by the successful description of the signals
of the first and last stimulus demonstrated above. We hypothe-
size that the signal of the nth stimulus is a combination of the
prestimulus aging, described by Eq. (6), the actual training,
described by Eq. (7), and poststimulus degradation effect de-
scribed by Eq. (8). We show in Sec. VIII of the Supplemental
Material [52] that a weighted sum of the prestimulus aging
and training along with the poststimulus degradation effect
adequately describes the data, which results in the prediction

Sn ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wtrain
(
1 − e− t train

τtrain
) + W poste−t age

post/τpost , n = 1

wpree− t
age
n−1
τpre + W train

(
1 − e− t train

τtrain
)

+W poste−t age
post/τpost , n > 1,

(9)
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where t age
n is given by Eq. (5) and

W train = wtrain
0 (0.4n)1.5(1−n), (10a)

W post = 0.2e−t train/τcoef , (10b)

τpost = 2.5 + 1.5(t train )0.5; (10c)

see the Supplemental Material [52], Sec. VIII. We choose the
constants wpre, wtrain

0 , and wtrain to be 0.11, 0.11, and 0.5,
respectively, to have values comparable to the fit parameters
in Figs. 2 and 3.

This equation correctly captures that Sn decreases with
the n − 1 previously applied stimuli. Figure 4(b) shows that
Eq. (9) also captures the qualitative features of the dependence
on t train and twait. However, this analytical description does
not reproduce the quantitative features of the signal observed
numerically because the signal is not just a linear superpo-
sition of the training and age impact; see the Supplemental
Material [52], Sec. VIII. Even though more research is needed
to obtain the exact dependency of the signal on training and
age, we choose to use the simple function to draw mechanis-
tic insights about the system. For instance, we observe that
the ratio of the coefficient of training and the coefficient of
age reduces with n, indicating that with every new stimulus
application, the impact of age on memory formation becomes
stronger. The advantage of the prediction is its simplicity.
Moreover, the prediction is an ad hoc description of the pa-
rameter dependence and other choices are possible; see the
Supplemental Material [52], Sec. VIII. The stimulation pro-
tocol is characterized by the three parameters n, t train, and
twait, while the almost identical τcoef , τpre, and τtrain capture
the characteristic timescale of network adaptation.

Finally, we investigate how many stimuli an adaptive net-
work can store. We demand that a stored stimulus can be read
out at a later time, implying that its signal exceeds a given
threshold Sthresh, which captures uncertainties in the read-out
apparatus as well as intrinsic noise. Figure 4(c) shows the
fraction of stimuli that can be retrieved (where Sn > Sthresh) as
a function of the total number of stimuli, N , and the training
time t train. In this case, large training times are detrimental
since they age the network too much for later stimuli to be
retrieved. Figure 4(d) shows the number of stimuli that can be
retrieved as a function of the training and waiting time. The
largest number of stimuli is stored for vanishing waiting times
since this minimizes the aging of the network. To find optimal
parameters for storing memory independent of the detection
threshold Sthresh of the read-out apparatus, we show the mini-
mal signal of all five stimuli for varying training and waiting
time in Fig. 4(e). We observe a finite optimal training time,

while a vanishing waiting time is best. Taken together, our
analysis reveals the strong trade-off between writing stimuli
for a sufficient duration and the resulting inevitable aging of
the network that suppresses signals of subsequent stimuli.

IV. DISCUSSION

We showed that adaptive flow networks can store memory
of multiple stimuli in the morphology of weak links, which
cannot be revived in our model. Consequently, signatures of
earlier stimuli are not destroyed by subsequent evolution, in
contrast to the behavior of typical mechanical networks [38].
Such irreversible decay of links has also been observed in
biological flow networks such as blood vasculature [53] and
P. polycephalum [3] networks. Since older networks contain
fewer strong links, which could shrink to store memory, the
readout signal of each stimulus strongly decreases with the
age of the network before the stimulus was written, which
is similar to the memory plasticity observed in a disordered
system [54,55]. Conversely, the signal strength increases with
its training time, i.e., the duration the stimulus is presented,
similar to memory formation by directed aging in mechanical
networks [22,24]. Taken together, we showed that adaptive
flow networks reach maximal capacity at an intermediate
training time, which compromises between sufficiently im-
printing and minimally aging.

Our work focuses on the simple situation that nonover-
lapping stimuli are subsequently applied at the edge of flow
networks of similar morphology. To describe realistic living
flow networks, such as Physarum or our vasculature, our work
will need to be extended in multiple directions: First, the
overall network geometry will have an impact on how stimuli
are stored. Work in mechanical networks [27,38] suggests
that the internal timescales of flow networks and their mem-
ory capacity will depend on network size. Second, realistic
systems deal with time-varying and potentially overlapping
stimuli of various strengths. Third, living systems can grow
and expand [56], implying that links can possibly regrow from
their minimal size and new links can be added to the network.
Taken together, it is likely that realistic adaptive flow networks
show a dynamic behavior, storing information about stimuli
on various timescales.
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