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How do the topology and geometry of a tubular network affect the spread of particles within fluid flows?
We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by
Physarum polycephalum. We demonstrate that a change in topology—pruning in the foraging state—
causes a large increase in effective dispersion throughout the network. By comparison, changes in the
hierarchy of tube radii result in smaller and more localized differences. Pruned networks capitalize on
Taylor dispersion to increase the dispersion capability.
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Transport due to fluid flowing through tubular networks
is of great interest, because it has technological applications
to biomimetic microfluidic devices [1–3], foams [4], fuel
cells [5], and other filtration systems [6] and lies at the heart
of extended organisms that rely on transport networks to
function: animal vasculature [7,8], fungal mycelia [9], and
plant tubes [10–12]. A big challenge regarding transport
networks is to understand how network architecture
changes the efficiency of particle spread throughout a
network. While it is experimentally tedious to map particle
transport in a network, predicting the spread of particles is
also a theoretical challenge [13–20]. Attempts to under-
stand how the network topology and geometry affect the
transport of particles are scarce [17]. Alternatively, we can
study the dynamic changes of tubular network architecture
in living beings. Organisms spontaneously reorganize their
transport networks, including tube pruning [21–24].
Examples are vessel development in zebra fish brain
development [21] or growth of a large foraging fungal
body [22]. Here, we study the slime mold Physarum
polycephalum which emerged as an inspiring and yet
puzzling model for “intelligent” living transport networks.
P. polycephalum, like foraging fungi, actively adapts its

network to environmental cues [25–29]. Networks con-
necting multiple food sources are a good compromise
between efficiency, reliability, and cost, comparable to
human transport networks [29]. Fluid cytoplasm enclosed
in the tubular network exhibits nonstationary shuttle flows
[30–32] driven by a peristaltic wave of contractions
spanning the entire organism [33]. Investigations of trans-
port in these networks are so far limited to estimates based
on the minimal distance between tubes [29,34,35]. We
tracked a well-reticulated individual trimmed from a larger
network (Fig. 1). After several hours, the thin central tubes
were abandoned in favor of a few large central tubes and

globular structures at the periphery. How does this radical
change of topology affect the transport capabilities of the
individual? What role do hierarchical tube radii play?
We present a method to efficiently map the effective

dispersion of particles from any initiation site throughout
any network with nonstationary but periodic fluid flows.
We use this method to study the change in dispersion
patterns as an individual adjusts its morphology after
trimming (Fig. 1). We find that the pruned state presents,
on average, higher transport capabilities than the initial
state. Emergent central tubes concentrate flow, enabling
higher flow velocities across the entire network. Thus, the
organism capitalizes on Taylor dispersion to increase
particle spread. Finally, we study the influence of hierar-
chical tube radii by comparing hierarchical unpruned and
pruned states to their theoretical counterparts with equal
tube radii. We find that radial hierarchies influence
dispersion patterns on local scales, but changes in average
transport capabilities require pruning.

1mm 1mm

0 T 100 T

FIG. 1. Bright-field image of a P. polycephalum individual cut
from a larger network (left) and the same individual 100
contraction periods later (right).
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To prepare P. polycephalum networks, plasmodia from
Carolina Biological Supplies were grown on 1.5% (wt/vol)
agar without nutrients and fed daily with autoclaved oat
flakes (Quaker Oats Company). A newly colonized oat
flake was transferred to a fresh agar dish 8–24 h before
imaging. Before imaging, slime mold networks were
trimmed to remove growing fans and oat flakes. Bright-
field microscopy images were obtained using a Zeiss Axio
Zoom V16 stereomicroscope.
Network architectures were extracted with a MATLAB

program and discretized into M nodes connected by N
tubes of length l ¼ 10 px and measured average radius
a0;ij (ij designs the tube connecting vertices i and j). Tubes
of P. polycephalum undergo a peristaltic wave of contrac-
tions. Tube radii aijðtÞ oscillate about a0;ij with contraction
period T, inducing fluid flow uij throughout the network.
Given the network architecture and the periodic contrac-
tions, the flow throughout the network is computed by
use of Kirchhoff’s law at every node; see Supplemental
Material [36], Sec. I, for details.
To describe how quickly particles disperse from any

given tube throughout a network, we want to quantify the
growth rate of the area of a cloud of dispersing particles.
After a short transient, the cloud disperses, on average, in a
diffusive way; e.g., the radius squared of the cloud is
proportional to time. We wish to evaluate that proportion-
ality constant that we call effective dispersion. For that we
develop in the following a numerical method, the dispers-
ing cloud, corresponding to a simplified resolution of the
particle dynamics in the network. The method is most
efficient to characterize the flow of particles in large
networks.
The dispersion of particles due to fluid flow in a tubular

network is, in general, a multidimensional problem. In the
case of P. polycephalum, the tubes are long enough to
smooth out variations in the concentration along the cross
section l ≫ ua20=κ. The cross-sectionally averaged con-
centration of particles cðz; tÞ in each single tube is, thus,
efficiently described by Taylor’s dispersion [44,45]:

∂c
∂t ¼

∂
∂z

�
−ucþ

�
κ þ u2a2

48κ

� ∂c
∂z

�
; ð1Þ

where κ ¼ 10−10 m2=s is the molecular diffusivity of
particles. Figure 2(a) shows the evolution of the area of
a cloud of dispersing particles starting from a single tube as
described by Eq. (1). Solving Eq. (1) for all starting points
in the trial network considered [inset in Fig. 2(a)] takes
several days and is thus unreasonable for large networks.
To capture the trend of these dispersion dynamics with

time in a more succinct way, we first aim at deriving the
local dispersion properties in the network. After that step,
calculating the long time dynamics will require only a
subtle averaging of these local dispersion properties over
time. Thinking of the dispersion dynamics as a random

walk of particles, we write the local dispersion, represent-
ing the instantaneous diffusion coefficient at node i, as

Di ¼
X

k∈nnðiÞ
pik

l2

2tik
; ð2Þ

where nnðiÞ are the nearest node neighbors of i, pik is the
average probability of entering tube ik, and tik is an average
transition time in that tube; see Fig. 2(b) and 2(c). The
transition probability and time are determined by the flow
dynamics, in the spirit of Ref. [14]. We introduce time-
independent quantities by averaging variables over the
period of the oscillations T. For a particle at node i, the
probability of entering one of the connected tubes nn(i) is
proportional to the flux at the entry of that tube. We thus
define pij ¼ qrms;ij=

P
k∈nnðiÞqrms;ki, where qrms;ij is the

time-averaged root mean square flux in tube ij. The
transition time is theminimumof either diffusion-dominated
or advection-dominated transport: tij ¼ minðtdiff;ij; tadv;ijÞ.
We take the effective diffusivity in Eq. (1) to determine the
diffusion-dominated transition time to be

tdiff;ij ¼
l2

2

*
1

κ þ u2ija
2
ij

48κ

+

l;T

; ð3Þ

where we average along the entire tube of length l and over
the period T. Averaging over the period is justified, because
the period is small compared to the time scales we are
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FIG. 2. (a) Change in the area of a cloud of dispersing particles,
according to the numerical solution of the full Taylor dispersion
and the dispersion cloud method, for the starting point circled in
blue; see network inset. (b) Particles spread in a random walk
defined by transition probabilities and times, allowing the
definition of local dispersion coefficients. (c) Particles effectively
spread as a Gaussian cloud of radius ri from site i, with a rate
averaged over the local dispersions. This method yields the
effective dispersion at long time scales in (d).
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interested in. To compute the time it takes a particle to
transverse a tube by advection, we in general have to solve
for the trajectory of the particle at any given start time t0 ∈ T:

dzðtÞ
dt

¼ uijðz; tÞ; zðt0Þ ¼ 0; z½t0 þ tadv;ijðt0Þ� ¼ l:

ð4Þ

For stationary flows the advection time is simply
tadv;ij ¼ uij=lij. For the nonstationary flows arising from
the peristaltic wave in P. polycephalum, we analytically
solve Eq. (4) by approximating the oscillatory flow veloc-
ities with uij ≈ u0;ij cos½ωðt − t0Þ�, where u20;ij ¼ 2hu2ijiT .
The diffusive time scale defined byEq. (3) acts as a cutoff for
tubes in which the fluid velocity is insufficient to allow a
particle to traverse the tube before the flow reverses, e.g.,
when Eq. (4) has no solution.
Based on these local dispersion properties, we now

define laws for the evolution of the area r2i of a cloud of
particles spreading from an initial node i and define the
effective dispersion after the transient initial phase as

Di ¼ lim
t≫T

r2i ðtÞ
4t

; ð5Þ

where the limit indicates times that are large, compared to
the initial transition time. At this point, effective dispersion
saturates; in most of our individuals, saturation is reached
after a few periods. Effective dispersion thus describes the
growth of the radius of a cloud of particles from initiation
node i with

ffiffiffiffiffiffiffiffiffi
4Dit

p
to the boundary of the network. We

assume that the probability of finding a particle at a
Euclidian distance d from node i is proportional to a
circular Gaussian: ð2πr2i Þ−1=2 expð−2d2=2r2i Þ, with r2i ¼
4Dit [46]. Over time, the cloud reaches nodes that have
different local dispersion properties, and thus r2i grows with
the average over the local dispersion coefficients within the
cloud, weighted by the probability of finding particles at
that point:

δr2i ¼
4δt
K

X
m≠i

Dmffiffiffiffiffiffiffiffiffiffi
2πr2i

p exp

�
−
d2im
2r2i

�
; ð6Þ

where dim denotes the Euclidean distance between nodes
and K ¼ P

m≠ið2πr2i Þ−1=2 exp½−ðd2imÞ=2r2i � is a normaliza-
tion factor; see Fig. 2(c) and 2(d). In flows with a net drift,
the Gaussian center would move with that drift velocity.
Effective dispersion takes the detailed geometry of the
network into account. As depicted in Fig. 2(d), a node
with low local dispersion coefficient Di but close to a node
with a highDj has a high effective dispersionDi. Iteratively
solving for the variance of the dispersing cloud of particles
still reproduces the solution for Taylor dispersion on a
network very well; see Fig. 2(a) (and SupplementalMaterial

[36], Fig. S2). The computation of the dispersing cloud with
the method of Eq. (6) for any starting point over the entire
trial network of Fig. 2(a) takes only a few minutes.
The concept of effective dispersion allows us to effi-

ciently parse how quickly particles will spread from any
location within a large transport network. We use this
method on P. polycephalum individuals (Fig. 1) to show
that pruning—a change in the topology of the network—
significantly enhances global network transport capabilities
(Fig. 3). In an unpruned network, the flow pattern is high
along the direction of the peristaltic wave (top left to
bottom right) growing to its highest values at the network’s
center. In the pruned network, the flow is high in all central
tubes. The mass accumulated in all of the many peripheral
tubes has to pass through only a few central tubes, and so
the velocity in these tubes is higher than in the unpruned
network. As expected from Taylor dispersion Eq. (1), tubes
with high flux enable particles to spread effectively. On
average over the network—weighted by the volume of the
tubes—effective dispersion for the pruned case is 36%
higher than in the unpruned case, being notably higher at
the center. This result is qualitatively conserved among
independent experiments (see Supplemental Material [36],
Sec. III). Pruning capitalizes on Taylor dispersion to
enhance transport. Although flow maps are only slightly
different, effective dispersion maps reveal differences. The
large central tubes of the unpruned and pruned networks
have comparable flow velocities and sizes, yet the prox-
imity of numerous small tubes in the unpruned case
decreases effective dispersion by about a factor of 2. In
the pruned network, particles do not get lost in the more
slowly propagating, smaller central tubes found in the
unpruned network and can be efficiently flushed fur-
ther away.
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FIG. 3. (a) Maps of the root mean square flow velocity, and
(b) effective dispersion, for the initial network (left) and the same
individual 100 contraction periods later (right).
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The topological changes to a network imposed by
pruning appear to be the limiting case of geometrical
changes to the hierarchy of tube radii. We demonstrate
now that geometric changes in a network can impose
heterogeneous transport capabilities, but large changes in
overall effective dispersion require pruning. To assess the
impact of a hierarchical organization of tubes, we compare
the dispersion properties of pruned and unpruned states
(ii) to a reference, nonhierarchical network with equal radii
but the same overall mass (i); see Fig. 4. In an unpruned
network Fig. 4(a), the average effective dispersion is about
11% higher when radii have no hierarchy, and in a pruned
network Fig. 4(b), the difference is less than 1%. These
results also translate qualitatively to other individuals (see
Supplemental Material [36], Sec. III). Maps of effective
dispersion in the unpruned network reveal that a hierarchi-
cal organization localizes regions of high transport capa-
bilities along and near larger central tubes rather than
homogeneous patterns of dispersion, as found in the
reference nonhierarchical network. In the pruned network,
a hierarchical organization enhances the dispersal proper-
ties of the center, while the spreading efficiency in periph-
eral tubes is barely impacted. Yet, the measured change in
effective dispersion may explain previously observed
changes in the mixing rate with network geometry [47].

In summary, we investigated the impact of topology and
geometry on particle flow within a live, tubular network by
observing P. polycephalum. By introducing the concept of
effective dispersion, we provide an efficient method to map
how quickly particles disperse throughout a transport
network from any initiation site. Effective dispersion
measures the growth rate of an area of dispersing particles
and can be used for any stationary or nonstationary but
periodic flow. Regarding the analysis of transport network
properties, effective dispersion gives a faithful yet efficient
mapping of flow-driven transport dynamics that are only to
a certain extent captured by measures like “betweenness”
[48,49] and mean first passage time measures [50].
We employed the effective dispersion method to
compare an initially well-reticulated network formed by
P. polycephalum with its evolved state 100 contraction
periods later. We observe that an alteration of network
topology, massive pruning, leads to a significant increase in
global effective dispersion. The remaining large tubes
serve as bottlenecks for flows. Capitalizing on Taylor
dispersion, particle diffusivity is strongly enhanced not
only at the center but throughout the network. By com-
parison, changes in the geometry of a network caused by a
hierarchical organization of tube radii, while inducing
specific zones of high transport capabilities, overall have
a smaller impact on effective dispersion than pruning. By
observing P. polycephalum we learned that pruning
increases transport properties tremendously. It is fascinat-
ing to speculate that pruning in other biological systems,
for example, during vessel development in zebra fish brain
development [21] or during growth of a large fungal body
[22], serve a similar objective of enhanced effective
dispersion. Pruning itself might be triggered by the con-
centration of specific dispersing particles. Pruning is also
tightly governed by the initial pattern of hierarchy, and the
dynamic entanglement between hierarchy and pruning
remains unsolved. Investigating the mechanisms allowing
for pruning would be highly instructive in the process of
understanding the overall organization of organisms.
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