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Abstract. Twist stiffness and an asymmetric bending stiffness of a polymer or a polymer bundle is captured
by the elastic ribbon model. We investigate the effects a ring geometry induces to a thermally fluctuating
ribbon, finding bend-bend coupling in addition to twist-bend coupling. Furthermore, due to the geometric
constraint the polymer’s effective bending stiffness increases. A new parameter for experimental investiga-
tions of polymer bundles is proposed: the mean square diameter of a ribbonlike ring, which is determined
analytically in the semiflexible limit. Monte Carlo simulations are performed which affirm the model’s
prediction up to high flexibility.

PACS. 87.15.Aa Theory and modeling, computer simulation – 87.15.Ya Fluctuations – 36.20.Ey Confor-
mation (statics and dynamics) – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian
motion

1 Introduction

The semiflexible polymers constituting the cell’s cytoskele-
ton determine morphology and elasticity of the cell. By use
of binding proteins the polymers organize into bundles of
closely packed filaments, which form the building blocks
for a variety of cellular processes such as filopodia, villi
or cilia [1,2,3,4]. Recent investigations of the mechanical
properties of polymer bundles [5] pose the question for a
coarse-grained description of their mechanics beyond the
macroscopic models for semiflexible polymers such as the
Kratky-Porod model [6] and its continuous description [7],
which represent the polymer by a space curve with a sin-
gle material parameter. A more general description is ob-
tained by the classical elastic ribbon [8], which accounts
for three parameters concerning bending and twisting.
There are also advances to describe polymer bundles as
a set of interconnected semiflexible polymers, starting out
with railway track models of two coupled filaments in two
[9] and three [10,11,12] dimensions, whose exact imple-
mentation and results were much in debate [12]. Recently,
a model for wormlike bundles with isotropic cross-section,
consisting of a finite number of semiflexible polymers, has
been introduced and analyzed [13,14]. These models show
new material properties, such as length-dependent bend-
ing and twisting moduli [13], as they include stretching
and shearing terms, not accounted for in the elastic ribbon
model considered in this paper. The latter regards both
bending and twist moduli as fixed material parameters.

Nature not only imposes geometric constraints on bio-
polymers by confinement through membranes but also de-
liberately uses the advantages of certain geometries as in
the case of circular DNA. Especially the ring geometry

induces interesting effects. In the context of plectonemes
mechanical equilibria of elastic rings have been studied
extensively [15], whereas thermal equilibria have mainly
been addressed for flexible rings [16,17,18]. Only recently
investigations dealt with the thermal fluctuations of poly-
mer ribbons that are stress-free in a circular configuration
[19]. However, both the mechanical and the thermal mo-
tion of rings with intrinsic bend differ principally from ini-
tially straight polymers as has been observed for the plec-
tonem transition [20]. For biopolymers participating in
the cytoskeleton such as actin and microtubuli the stress-
free conformation is straight. Even small DNA rings have
lately been found to exhibit no intrinsic bending without
attachment of proteins [21]. Furthermore, ribbonlike rings
require theoretical modeling as in vitro experiments have
shown that the mechanical properties of polymer bundles
can be well studied when the bundle is constrained to a
ring structure [5]. In vivo polymer bundle rings are found
in erythrocytes of birds and reptiles [22].

Ligating a ribbon’s end to form a ring reduces the
set of conformations available to the ribbon. Perturbing
the ring’s mechanical equilibrium configuration by a small
twist induces a bending of the ribbon’s center line, as
can be easily visualized with a ring consisting of a small
strip of paper. This twist-bend coupling is mathematically
captured by White’s formula [23,24], which connects the
overall twist to the global configurational integral denoted
writhe for any closed curve. However, we will show that
for a ribbonlike ring with asymmetric cross section bend-
ing within the equilibrium plane and bending transversal
to the equilibrium plane are also coupled. In this case it is
instructive to parameterize the ring in terms of Euler an-
gles such that each of them describes either a bending or
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a twisting motion. Modeling thermally fluctuating rings
we pursue to give analytical expressions for experimen-
tally observable properties of the ring. In analogy to the
mean square end-to-end distance of a polymer the mean
square diameter is well suited to represent the statistical
properties of a fluctuating ribbonlike ring.

In this work we investigate the effects of a ring geome-
try on a fluctuating semiflexible polymer ribbon. In Sec-
tion 2 the elastic ribbon model is formulated in the limit
of small fluctuations about a ring. The elastic free energy
already indicates the first effect of the ring geometry on
a ribbon: the bend-bend coupling in addition to twist-
bend coupling. Furthermore, in Section 2 the foundations
are laid for the analytic calculation of the experimentally
accessible mean square diameter. The discussion of this
ensemble parameter in Section 3 reveals the quality of the
coupling and the second effect due to the geometric con-
straint: the effective stiffening of the ribbon. Assessing the
quality of the analytical result for the mean square diame-
ter with Monte Carlo simulation we find that our model
predicts the correct behavior for a polymer with symmet-
ric cross section up to total contour length seven times the
persistence length. Beyond this stiff limit our simulations
confirm previous results for almost flexible polymer rings.
Thus, polymer rings with symmetric cross section are fully
characterized analytically.

2 The model

To specify a deformed state of a ribbon a local body co-
ordinate system {t1(s), t2(s), t3(s)} is assigned to every
point s ∈ [0, L] along the center line of the ribbon, such
that the t3(s) axis points tangent to the center line of
the rod in the direction of increasing s, while t1(s) and
t2(s) are aligned to the principal axes of the cross section.
The change of body coordinates along the inextensible rib-
bon is described by rotations ω via the generalized Frenet
equations:

dti
ds

= ω × ti, i = 1, 2, 3. (1)

ω1 and ω2 may be interpreted as the curvatures in the
principal directions, while ω3 may be denoted as the heli-
cal deformation density [15]. Hence, the elastic free energy
of a ribbon reads [8]:

F =
kBT

2

∫ L

0

ds
[

a1ω
2
1 + a2ω

2
2 + a3ω

2
3

]

, (2)

where a1 and a2 denote the bending stiffnesses along the
principal axes of the cross section and a3 indicates the
twist stiffness. For the geometry of a ring it is instruc-
tive to express the rotations ω in terms of Euler angles
φ(s), θ(s), ψ(s) according to Euler’s equations, where φ is
the azimuthal angle, θ the polar angle and ψ the twist
angle. The constraint of a closed ring of contour length
L = 2πRc is then satisfied by φ0(s) = s/Rc and θ0(s) =
π/2. The remaining angle ψ0(s) is chosen as to minimize
the elastic free energy which is achieved by ψ0(s) = π/2

Fig. 1. Illustration of the Euler angles and their coupling in-
duced by the ring geometry: A sinusoidal variation of each
Euler angle at a time results in more than one free energy
term, if coupling is present: (a) δφ = sin(s/Rc), in-plane bend-
ing only, F̃ = a1, (b) δθ = sin(s/Rc), transversal bending
yields in-plane bending and twisting, F̃ = −a1 + a2 + a3, (c)
δψ = sin(s/Rc), twisting yields both in-plane and transversal
bending, F̃ = −a1 + a2 + a3; F in units of πkBT/2Rc.

for a1 < a2 or by ψ0(s) = 0 for a1 > a2. These two cases
are essentially the same, as the major principal axis of the
cross section is always perpendicular to the equilibrium
plane of the ring. We therefore restrict our discussion to
a1 < a2. As the biopolymers constituting polymer bundles
are itself semiflexible, we investigate the limit of small fluc-
tuations of the ribbonlike ring. In this limit self-avoidance
is satisfied and hence our phantom chain model should
yield correct results for real polymers. Furthermore, we
keep the total length of the ribbon strictly fixed. Small
fluctuations in the contour length might though lead to
interesting behavior, the investigation of which lies be-
yond the scope of this publication.

Assuming small deviations δφ, δθ, δψ from the ground
state of the ring specified by φ0, θ0, ψ0 the rotations ω

are expanded and all quadratic terms obtained from the
squared rotations are taken into account to obtain the
elastic free energy in the limit of small fluctuations:

F =
kBT

2

∫ L

0

ds

{

a1

[

(

dδφ

ds

)2

−
(

δθ

Rc

)2

+

(

dδθ

ds

)2
]

+ (a2 − a1)

(

δψ

Rc
+
dδθ

ds

)2

+ a3

(

dδψ

ds
− δθ

Rc

)2
}

. (3)

In parameterizing the ribbon in terms of Euler angles a
distinct motion was assigned to each angle. The azimuthal
angle δφ describes bending within the equilibrium plane,
while the polar angle δθ characterizes transversal bend-
ing and the twist angle δψ depicts twisting around the
center line of the ribbon, see Fig. 1. Considering the elas-
tic free energy associated with each conformation of the
ribbon, three energy components can be distinguished, the
in-plane bending energy Fin−plane, the transversal bending
energy Ftrans and the twisting energy Ftwist, recognizable
by their proportionality to their associated stiffnesses a1,
a2 and a3, respectively. In a completely decoupled sys-
tem such as an open polymer ribbon each energy com-
ponent would comprise just the spatial derivative of its
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corresponding Euler angle

F =
kBT

2

∫ L

0

ds

{

a1

(

dδφ

ds

)2

+ a2

(

dδθ

ds

)2

+ a3

(

dδψ

ds

)2
}

. (4)

In the limit of Rc → ∞, keeping a1, a2 and a3 fixed, the
elastic free energy of a polymer ribbon ring as given in
equation (3) decouples to the above expression, as local
fluctuations are not influenced by the ring geometry any-
more. However, for small contour radius with respect to
the bending and twisting stiffnesses, the elastic free energy
of a polymer ribbon ring exhibits both twist-bend coupling
and bend-bend coupling. Twist-bend coupling heuristi-
cally means that twisting induces bending and vice versa.
In the case of Ftwist the twist arising form the change of
the twist angle δψ is diminished by the height δθ relative
to the contour radius Rc the ring gains through transver-
sal bending. The opposite coupling effect is observed for
Ftrans where the bending energy is augmented by the lo-
cal twist relative to Rc. Analyzing the in-plane bending
energy component

Fin−plane =
kBT

2

∫ L

0

ds

{

(

dδφ

ds

)2

−
(

δθ

Rc

)2

−
(

δψ

Rc

)2

− 2
dδθ

ds

δψ

Rc

}

, (5)

twist-bend coupling is found again, but now also a varia-
tion of the transversal bending Euler angle δθ reduces the
in-plane bending energy. This is identified as bend-bend
coupling. Furthermore, the release by the twist depends on
the curvature of the transversal bending, hence, a mixed
term arises.

As a demonstrative example the conformations of a
ribbon with sinusoidal variation of each Euler angle are
depicted in Fig. 1. Both altering δθ and δψ causes contri-
butions to all three terms in the elastic free energy exem-
plifying the couplings. Remarkably, altering the twist an-
gle δψ or the polar angle δθ in the same sinusoidal manner
requires exactly the same energy cost. Furthermore, for a
ribbon with symmetric cross section the only energy con-
tribution due to sinusoidal transversal bending or twisting
is proportional to the twist stiffness only, as other terms
cancel. Previous work assumed the unstressed state of a
polymer to be a ring conformation [19], whose applica-
bility to cytoskeletal polymers maybe limited, yielding no
coupling of transversal bending and twisting to in-plane
bending.

Given the elastic free energy statistical properties may
be derived. Because of its importance for experimental in-
vestigations we shall focus on the mean square diameter of
the ring. Since the Euler angles must obey periodic bound-
ary conditions to satisfy a closed ring they are expanded in
a Fourier series. In the Fourier representation the periodic

boundary condition correspond to: δθ̃(0) = δφ̃(1) = 0.
The Fourier transformed elastic free energy then results
in:

F =
kBTπ

Rc

{

(a2 − a1)|δψ̃(0)|2

+ (a3 + a2 − a1)|iδθ̃(1) + δψ̃(1)|2

+

∞
∑

n=2

[

(a2 − a1)|inδθ̃(n) + δψ̃(n)|2 + a1n
2|δφ̃(n)|2

+ a1(n
2 − 1)|δθ̃(n)|2 + a3|inδψ̃(n)− δθ̃(n)|2

]

}

. (6)

Note that concerning the Euler angles themselves only
the twist angle δψ and the polar angle δθ are coupled.
Diagonalizing the Fourier transformed elastic free energy
and applying the equipartition theorem the correlations
of the Euler angles are obtained depending on the mean
square modes.

〈δφ(s2)δφ(s1)〉 =
Rc

π

∞
∑

n=2

〈δφ̃2(n)〉 cos(ns/Rc) , (7)

〈δθ(s2)δθ(s1)〉 =
Rc

π

cos(s/Rc)

a3 + a2 − a1

+
Rc

π

∞
∑

n=2

〈δθ̃2(n)〉 cos(ns/Rc) , (8)

〈δψ(s2)δψ(s1)〉 =
Rc

π(a2 − a1)
+
Rc

π

cos(s/Rc)

a3 + a2 − a1

+
Rc

π

∞
∑

n=2

〈δψ̃2(n)〉 cos(ns/Rc) , (9)

where s = |s2 − s1|. Closed expressions for the modes
are only obtained for n ≥ 2. For the azimuthal angle δφ
the zeroth mode vanishes due to the rotational symmetry
around the axis through the ring’s center of mass. The
first mode is zero due to the periodic boundary conditions,
which also set the zeroth polar angle mode equal nought.
However, the zeroth mode of the twist angle δψ vanishes
only in the limit of (a2 − a1) → ∞. The minimum of the
elastic free energy is given by δψ = 0, such that the major
principal axis of the cross section along a2 in our definition
is perpendicular to the equilibrium plane. For finite val-
ues of both bending stiffnesses small fluctuations around
δψ = 0 arise with an amplitude that increases with a de-
caying difference between the bending stiffnesses, being
not defined for equal magnitude. Among all three stiff-
nesses a1 influences the fluctuations of a polymer ribbon
ring the most. For a1 = ∞ all deformations of the ring are
energetically hindered, since also twisting and transversal
bending require suppressed in-plane bending due to the
coupling. For small a1 on the other hand the fluctuations
exceed the small deviations approximation. As the effect
of the other two parameter is smaller it is reasonable to
study their significance relative to the in-plane bending
stiffness a1. Hence, we introduce the dimensionless pa-
rameters α = a1/a2 and τ = a1/a3, in which the modes
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of the Euler angles for n ≥ 2 are given by:

〈δφ̃2(n)〉 = Rc

a1n2
, (10)

〈δθ̃2(n)〉 = Rc

a1

[

1

n2 − 1
+

α− 1

n2 + (1− τ)(α − 1)

]

, (11)

〈δψ̃2(n)〉 = Rc

a1

[

1

n2 − 1
+

τ − 1

n2 + (1− τ)(α − 1)

]

. (12)

As variations in δφ do not influence transversal bending or
twisting, the modes only depend on the in-plane bending
stiffness a1, whereas the modes of the multiply coupled
Euler angles δθ and δφ are functions of all three stiffnesses.

The mean square diameter is by definition just the
mean square distance between two positions r(s) sepa-
rated by half the contour length L/2 = πRc along the
center line of the ribbon. The mean square distance itself
can be calculated from the tangent-tangent correlation by:

〈D2〉 = 〈(r(L/2)− r(0))
2〉

=

∫ L

2

0

dy

∫ L

2

0

dy′〈t3(y)t3(y′)〉 . (13)

The tangent is approximated for small deviations from the
rigid ring up to second order in δφ and δθ such that the
tangent-tangent correlation yields:

〈t3(s1)t3(s2)〉 = 〈δφ(s1)δφ(s2)〉 cos
( |s1 − s2|

Rc

)

+ 〈δθ(s1)δθ(s2)〉

+
[

1− 〈δθ2〉 − 〈δφ2〉
]

cos

( |s1 − s2|
Rc

)

. (14)

Evaluating the double integrals the mean square diameter
is represented in terms of the modes of the Euler angles:

〈D2〉 = (2Rc)
2 − 4R2

c

π

∞
∑

n=2

〈δφ̃2(n)〉 − 4R2
c

π

∞
∑

n=2

〈δθ̃2(n)〉

+
4R2

c

π

∞
∑

n=2
n even

(n2 + 1)〈δφ̃2(n)〉
(n2 − 1)2

+
4R2

c

π

∞
∑

n=3
n odd

〈δθ̃2(n)〉
n2

. (15)

From this expression the mean square diameter can be de-
rived. The sum of all four sums always yields a negative
term corresponding to a decrease of the mean squared di-
ameter from its rigid ring value of D = 2Rc. Note that
the mean square diameter does not depend on the twist
modes since twist motions in the weakly fluctuating ap-
proximation do not affect the center line of the ribbon and
hence do not decrease the mean square diameter.

3 Results and Discussion

To study the effect of a ring geometry on a fluctuating
polymer ribbon with minor bending stiffness a1, relative
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Fig. 2. Contour plot of the descent of the mean square diame-
ter −∂〈D2〉/∂(R3

c/a1) versus α = a1/a2 and τ = a1/a3, where
the contour lines decrease from π/2 at (∞, 1) to 2/π at (0, 0)
in ten equal steps. The additional white contour marks where
in-plane and transversal fluctuations are equal in decreasing
the diameter.

bending stiffness α = a1/a2 and relative twist stiffness
τ = a1/a3 we choose the mean square diameter as param-
eter for the ensemble average since this parameter is ex-
perimentally accessible and enables comparison with the
mean squared end-to-end distance of an open polymer. In
the limit of small fluctuations the analysis in the previous
section enables us to evaluate the mean square diameter
of a polymer ribbon constrained to a ring by inserting
the modes of the Euler angles as given in equations (10)
and (11) into the formula (15) and calculating the sums,
resulting in:

〈D2〉 = 4R2
c−

R3
c

a1

[

4 + π2τ

2π(τ − 1)
− tan(π

√

(1− α)(1 − τ)/2)
√

(1− α)(1 − τ)3

− 2

√

1− α

1− τ
cot(π

√

(1− α)(1 − τ))

]

. (16)

Analyzing this mean value the effects of the ring geome-
try are unveiled, namely coupling of twisting and bend-
ing and an effective stiffening of the polymer. To this end
a plot of the diameter is desirable. Since that would re-
quire a four dimensional space, we refrain from depict-
ing the reciprocally proportionally decrease of the mean
square diameter with bending stiffness a1 and show a
contour plot of the descent of the mean square diameter
−∂〈D2〉/∂(R3

c/a1) versus α and τ in Fig. 2. The diameter
decreases by 2/π·R3

c/a1 at (τ = 0, α = 0) up to π/2·R3
c/a1

at (∞, 1).
Our analysis of the elastic free energy in the limit of

small fluctuations shows a bend-bend coupling in addition
to twist-bend coupling. The motion describing twisting δψ
in equation (3) contributes to the transversal and the in-
plane bending term in the elastic free energy. Vice versa
the motion characterizing transversal bending δθ increases
the twisting free energy term, hence bending and twisting
are coupled. Furthermore, transversal bending motion in-
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dicated by δθ in equation (3) decrease the in-plane bend-
ing term in the elastic free energy, therefore both bending
motions are coupled. In the case of the mean square diam-
eter the coupling comes apparent in the complicated de-
pendence on the bending and twisting stiffness in equation
(16), in contrast to the uncoupled case, where the subtra-
hend of the diameter is constituted of three independent
term proportional to the inverse of the bending or twist-
ing stiffness, respectively. Both transversal bending and
twisting are strongly dependent on the in-plane bending
stiffness, as all fluctuations are diminished for infinite in-
plane bending stiffness a1. In the limit of a1/Rc → 0 the
motions become uncoupled as expected for the limit of a
open polymer. The quality of the twist-bend coupling be-
tween transversal bending and twisting can be read of the
descent of the mean square diameter depicted in Fig. 2.
The coupling is strongest in the regime of small α and τ ,
there a small increase in α is compensated for by a small
decrease in τ , yielding constant descent. The increased
transversal fluctuations are reduced by a higher inabil-
ity to twist. For larger α the coupling to τ becomes less
and less as an increase in α requires a larger and larger
decrease in τ for compensation. The twist-bend coupling
vanishes for equal bending stiffnesses α = 1 or zero twist
stiffness τ = ∞ as expected.

The effective stiffening due to the ring geometry can
be analyzed by comparing the amount by which the in-
plane bending modes and the transversal bending modes
make the diameter decrease from its mechanical equilib-
rium value. For an uncoupled open polymer ribbon both
fluctuations are equal for equal bending stiffnesses. How-
ever, if periodic boundary conditions are applied to gener-
ate a polymer ring, in-plane fluctuations become strongly
constrained while the transversal motion is only constrained
via the bend-bend coupling. Discretizing a polymer ring
to a polygon the restrictions on both bending motions
due to the boundary conditions become obvious. While a
single segment of an inextensible polygon can be moved
transversal rotating by any angle up to 180◦, a purely in-
plane state is only achieved rotating by exactly 180◦. All
other in-plane bending moves would require neighboring
segments to move as well, the motion is no longer truly
local. In-plane bending is therefore strongly constrained,
which decreases their fluctuation amplitude with respect
to the transversal bending amplitude. Based on the ex-
pression for the mean square diameter given in equation
(15) the origin of the subtrahends that make the diameter
decrease of the fluctuating ribbon from D = 2Rc and their
amount are comparable. For τ and α small the in-plane
fluctuations account for the majority of the subtrahend,
as transversal fluctuations are suppressed by large twist-
ing stiffness and large transversal bending stiffness rela-
tive to the in-plane bending stiffness. This changes if one
of the relative stiffnesses increases, equal decrease of the
diameter is reached along the white contour line in Fig. 2.
Along this line a2 is well larger than the in-plane bending
stiffness a1, nevertheless transversal fluctuations extract
more length from the diameter than in-plane modes. This
puzzling behavior demonstrates the effective stiffening due

to conformational constraints which mainly affects the in-
plane motion.

For reasons of illustration two limiting cases of the
mean square diameter of a polymer ribbon are discussed
in the following. First the limit of a double stranded bun-
dle with α = 0 is considered. Afterwards a polymer rib-
bon with symmetric cross section, α = 1, is investigated.
Two rigidly connected polymer strands suppress any fluc-
tuations parallel to their interconnection, this behavior
is recovered by our ribbon model in the limiting case of
a2 = ∞. Corresponding to α = 0, the mean square diam-
eter is easily calculated to be:

〈D2〉α=0 = 4R2
c −

R3
c

a1

[

4 + τπ2

2π(1− τ)
+

2 cot(π
√
1− τ )√

1− τ

+
tan(π

√
1− τ/2)

(1− τ)3/2

]

. (17)

Transversal fluctuations are still possible for any finite
twist stiffness, they even increase rapidly from zero at
τ = 0 as can be anticipated from the small distance of
the contour lines for α = 0 in Fig. 2. For τ = ∞ the sub-
trahend coincides with that of α = 1. Hence, zero twist
stiffness a3 enables local twisting which washes out any
difference between the bending stiffness a1 and a2, even
an infinite one.

To verify our predictions based on the ribbon model
by comparison with previous results and our simulations
we study the special case of a symmetric cross section
where both bending stiffnesses coincide a1 = a2 = lp,
i.e. α = 1. This can be identified as an semiflexible poly-
mer constrained to form a ring with persistence length lp
and additional twist stiffness. The mean square diameter
is computed to be:

〈D2〉α=1 = (2Rc)
2

(

1− 1

16

2πRc

lp

)

. (18)

This linear decay is up to one-hundredth identical to the
numerical result obtained by Shimada and Yamakawa for
the mean square radius of gyration [16], which coincides
with the mean square radius for semiflexible rings as the
center of mass lies in the center of the rigid ring. Note
further that the mean square diameter is independent of
the twist stiffness, although no constraints where applied
to the latter. In the limit of symmetric cross section the δθ
modes become independent of τ although the δψ modes
are still weakly coupled to bending, as can be seen by en-
tering α = 1 into equations (11) and (12). Since the mean
square diameter depends on δφ and δθ modes only, the
mean square diameter of a ring with symmetric cross sec-
tion is independent of the twist stiffness. Comparing the
mean square diameter in this limiting case with the end-
to-end distance of a semiflexible polymer quantifies the
effective stiffness resulting from the geometry of the ring.
For a weakly fluctuating semiflexible polymer of length
L and persistence length lp the end-to-end distance is
〈R2〉 ≈ L2(1 − L/3lp). Examining the prefactors of the
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linear term we note that a ring is effectively about five
times stiffer than an unconstrained polymer. This effec-
tive stiffening becomes also apparent when analyzing the
shape of semiflexible polymer rings [25]. There, the stiff
limit dominated by planar, elliptical shapes extends up
to L/lp ≈ 5, beyond which three dimensional, crumpled
structures prevail.

To asses the quality of the tight ring approximation
a semiflexible ring with symmetric cross section and zero
twist stiffness has been simulated using Metropolis Monte
Carlo methods. The ring is described as a polygon com-
posed of N tethers of fixed length a = (L/π) sin(π/N) and
direction ti3. The energy assigned to an individual config-
uration is given by the elastic energy, F = NkBT (lp/L)×
×∑N

i=1(1 − ti3t
i+1
3 ), imposing periodic boundary condi-

tions , tN+1 = t1. New conformations are achieved by
pivot moves [18], performing 106 Monte Carlo steps per
segment. The results for the mean square diameter ver-
sus flexibility L/lp presented in Fig. 3 suggest that our
approximation is valid for L/lp up to seven, only at this
flexibility the cross over to nearly flexible behavior as in-
vestigated by Shimada and Yamakawa [16] occurs. Note
that there is no parameter to adjust. Since there is almost
no cross-over region, a semiflexible polymer ring is entirely
described by a stiff regime and an almost flexible regime,
which are now both explained analytically.
In general weakly bending approximations yield good pre-
dictions for flexibilities up to one. However, our model for
a weakly fluctuating ring is in agreement with simulations
up to much higher flexibilities as a result of the effective
stiffening due to the ring geometry.

4 Conclusions

In summary, we have investigated the effects of a ring
geometry on a thermally fluctuating polymer ribbon. Pa-

rameterizing the ribbon in terms of Euler angles and ap-
proximating for small fluctuations an analytical expres-
sion for the mean square diameter of the ring was derived.
Analysis of this ensemble parameter and the elastic free
energy of the fluctuating semiflexible polymer constrained
to a ring reveiled coupling between in-plane and transver-
sal bending motions as well as twisting motions. Further-
more an effective stiffening of the ring mainly affecting
the in-plane bending modes was found to result from the
ring geometry and could be quantified as approximately
five times the polymer’s bending stiffness in the case of
a symmetric cross section. Comparison with Monte Carlo
data shows good quantitative agreement with our model
up to high degrees of flexibility (L/lp ≈ 7). Knowledge
of an analytical result for the mean square diameter de-
pending on two bending stiffness and twist stiffness en-
ables new possibilities for the experimental determination
of polymer and polymer bundle mechanics. As a thorough
understanding of polymer properties is required for the
unravel of cytoskeleton mechanics, we hope that our work
will contribute to investigations in the broader field of cell
rheology and bundle dynamics.
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