5/10/17 Congrats to Felix and Mirna on their first Physarum paper!

Wounding is a severe impairment of function, especially for an exposed organism like the network-forming true slime mould Physarum polycephalum. The tubular network making up the organism’s body plan is entirely interconnected and shares a common cytoplasm. Oscillatory contractions of the enclosing tube walls drive the shuttle streaming of the cytoplasm. Cytoplasmic flows underlie the reorganization of the network for example by movement toward attractive stimuli or away from repellants. Here, we follow the reorganization of P. polycephalum networks after severe wounding. Spatial mapping of the contraction changes in response to wounding reveal a multi-step pattern. Phases of increased activity alternate with cessation of contractions and stalling of flows, giving rise to coordinated transport and growth at the severing site. Overall, severing surprisingly acts like an attractive stimulus enabling healing of severed tubes. The reproducible cessation of contractions arising during this wound-healing response may open up new venues to investigate the biochemical wiring underlying P. polycephalum‘s complex behaviours.

Spatial mapping reveals multi-step pattern of wound healing in Physarum polycephalum.
Felix Bäuerle, Mirna Kramar & Karen Alim,
J. Phys. D: Appl. Phys., 50, 434005 (2017). (PDF)