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Abstract. The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein
are the key regulators for the spatial and temporal organization of plant development. In particular auxin
induces the polar localization of its own efflux facilitator. Due to this positive feedback, auxin flow is
directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin
accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue
of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution
along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization
model. Solving the model analytically we uncover an excitable polarization front that triggers a polar
distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their
initiation site, we suggest a possible resolution to the puzzling occurrence of bipolar cells, thus we offer
an explanation for the development of closed, looped veins. Employing non-linear analysis, we identify the
role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative
predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic
rates of auxin and PIN dynamics.

1 Introduction

The polar transport of the plant hormone auxin is the key
regulator of many processes in the spatial and temporal
organization of development and growth of plants. As the
indole-3-acetic acid, in short auxin, induces the polar lo-
calization of its own efflux facilitator, a member of the
family of PIN proteins, a variety of auxin and PIN pat-
terns arise [1]. Those distributions change dynamically as
plants orient in response to environmental stimuli denoted
as tropism [2,3]. During the morphogenesis of plants PIN
and auxin rearrangements lie at the heart of organ posi-
tioning via phyllotaxis [4] and vein patterning in leaves [5].

The notion that auxin is transported in a polar, di-
rected, manner inspired researchers since its discovery by
Went in 1933 [6]. Early works already suggested the partic-
ipation of a polar localized efflux carrier in the transport of
auxin [7–9], well before its discovery in the form of mem-
brane bound PIN proteins a decade ago [10]. Since then
numerous experiments confirmed that PIN proteins facili-
tate the efflux of auxin from cells in plants [11,2,12,13,4],
yeast and mammalian cells, which had been supplied with
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auxin and PIN [14]. A feedback between auxin and its ef-
flux facilitator localization was proposed by Sachs in his
canalization hypothesis [15], later formalized by Mitchi-
son [16,17]. Canalization predicts a feedback of auxin flow
between neighboring cells on the amount of efflux facili-
tators favoring the direction of auxin flow. Experiments
confirmed a definite feedback between auxin and PIN dis-
tribution [18,19], the cause of which is reported to lie in
auxin affecting the clathrin-dependent endocytotic cycling
of PIN [20,21]. Late investigations also identified biochem-
ical processes taking part in the PIN localization in re-
sponse to auxin, see ref. [22] for a review.

A variety of microscopic models for the dynamics of
auxin and PIN proteins have been developed to describe
their patterns during phyllotaxis [23] and leaf vein for-
mation [24], see [25] for a review. Extensive simulations
of these microscopic models describe qualitative aspects
of plant development. However, the role of the underly-
ing biological processes and their kinetic rates still remain
elusive to a large extent. Quantitative predictions based
on analytical solutions of the microscopic equations in a
simple scenario might on the one hand help to estimate
kinetic parameters and on the other hand give insight into
the impact of certain processes. A scenario amenable to
such an investigation is the polarization of the, in this par-
ticular case, PIN1 distribution due to auxin flow in the
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Fig. 1. (Colour on-line) Illustration of the dynamics of auxin and its efflux facilitator PIN. (A) Schematic drawing of vein
initiation in a leaf primordium. Auxin (blue) accumulates at convergence points in the outer epidermal layer (rim), from which
it is transported into the ground meristem. Due to this inflow of auxin, ground meristem cells become polarized in their PIN
distribution (orange). (B) Polarization of PIN distribution in a strand of cell due to auxin inflow from the left, indicating details
of auxin and PIN dynamics. The weak acid auxin accumulates in the interior of a plant cell due to a gradient in pH. In the
inner cell the charged anion is trapped and can only be transported outwards by the help of efflux facilitators in the form of
PIN proteins. The auxin transport from cell to cell has an efficiency eA. Auxin synthesis sA and degradation dA takes place in
the inner cell. PIN proteins cycle between the bulk and the cell membrane by basal attachment sP and detachment rates dP . In
addition, positive auxin net flow is modeled to feed back on these rates increasing the PIN attachment by gP . Along the strand
of cells the color shading indicates relative concentration of auxin and PIN on either membrane.

earliest stage of vein formation [26], see fig. 1. Vein initi-
ation itself takes place in the ground meristem tissue of
leaf primordia. The positions of vein initiation sites are de-
termined by auxin accumulation in “convergence” points,
which lie in a rim of epidermal cells around the ground
meristem tissue [19,27–29]. These single cells with high
auxin concentration polarize towards the ground meris-
tem and locally transport their auxin into a cell in the
ground meristem tissue. This localized inflow triggers the
successive polarization of PIN distributions along a strand
of cells starting from the cell with auxin inflow [19]. The
strand of polarized cells finally extends up to a previously
existing strand of polarized cells, building the pre-pattern
for the vascular network. Starting from the petiole of the
leaf primordium the polarized cells differentiate then into
vascular cells [30]. In particular, second-order veins in Ara-
bidopsis thaliana exhibit PIN polarization in opposite di-
rections starting from a single bipolar cell, which lies in
the ground meristem below the auxin convergence point
in the epidermal layer [19]. This yet unresolved behavior
gives rise to the formation of closed vein loops when both
oppositely polarized strands connect to already formed
veins.

A resolution on the origin of bipolar cells is postu-
lated by examination of a minimal canalization model for
the polarization of PIN distribution due to auxin supply
in a one-dimensional strand of cells. Performing a non-
linear analysis of the model reveals for each single cell
two uniform stable states considering polarization. One
resting state, where efflux facilitators are symmetrically
distributed within the cell, and one polar state character-
ized by a constant net transport of auxin due to a polar
localization of PIN proteins. The model predicts auxin
triggered polarization pulses and fronts as a consequence

of a dynamic rearrangement of PIN efflux facilitators to-
wards the polar state. Cells with continuous auxin supply
can be in a dynamic bipolar state, from which polariza-
tion fronts travel to both ends of a strand of cells. The
role of the underlying kinetic processes becomes explicit
in the course of the non-linear analysis of the polarization.
An analytic solution results in quantitative predictions on
the pulse’s and front’s auxin amplitude depending on the
kinetic parameters, establishing a basis for detailed exper-
imental determination.

2 Model

To describe how auxin polarizes the distribution of PIN
during vein formation, we focus on a one-dimensional
strand of cells, see fig. 1(B), assuming that there is no
net auxin flow perpendicular to the direction of polar-
ization. The strand is subdivided into cells of length ℓ
numbered by n. Every cell is characterized by a single
auxin concentration A(n) and the concentration of mem-
brane bound PIN proteins. We distinguish between PIN
proteins in the bulk of the cell Pb(n) and adsorbed to
the cell membrane either on the right-hand side or on
the left-hand side of the cell, Pr(n), and Pl(n), respec-
tively. The auxin concentration per cell changes due to
synthesis and degradation with rates sA and dA. Further-
more, the amount of auxin changes due to a net flow to
neighboring cells facilitated by PIN proteins embedded in
the cell membranes of the corresponding cell-cell inter-
face. The net flow from cell n to cell n+1 is, hence, given
by J(n) = eA[A(n)Pr(n) − A(n + 1)Pl(n + 1)], where eA

denotes the transport efficiency rate across the cell-cell
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interface. The full auxin dynamics is then described by

d

dt
A(n) = sA − dAA(n) −

1

ℓ
[J(n) − J(n − 1)] . (1)

Stating these dynamics for auxin we assume that auxin
transport is dominantly from one inner cell to the other.
Auxin is known to accumulate in cell interiors [7,31] since
auxin is a lipophilic weak acid which easily enters cells as
undissociated acid, its prevailing form at the pH of 5 in
extracellular space. In the interior of plant cells ion pumps
keep the pH at 7, leading to the ionization of auxin and
building a concentration gradient that accumulates auxin
inside cells. As lipid membranes are impenetrable for the
now charged molecule, auxin is trapped in the cell’s inte-
rior rendering efflux facilitator necessary. Being exported
by PIN proteins, auxin is free to diffuse in the extracellular
space, the apoplast. However, the distance between neigh-
boring cells is so small that almost all auxin molecules
have entered any cell again within one millisecond1. Fur-
thermore, auxin can be assumed to be approximately uni-
formly distributed within typical cells because the diffu-
sion of the small molecule auxin is very large. In aqueous
solutions D = 670μm2/s has been measured [34] which
has been confirmed by indirect measurements of the diffu-
sion constant in auxin transport experiments [35]. Distinct
auxin gradient would therefore only arise for large plant
cells of about 100μm or larger. It is not entirely clear
that this reasoning holds under the condition of highly
effective auxin transport [36], however, the time scale of
auxin transport by mere diffusion through a cell of typical
50μm is 4 s, faster than other process contributing to the
polarization of PIN, substantiating the neglect of auxin
gradients within cells during PIN polarization. Hence, we
can approximate auxin flow to be dominated by cell-to-cell
transport. Synthesis and degradation of auxin are consid-
ered since they take place on fast time scales as the major-
ity of auxin is stored in its conjugated form inside the cell
which is readily hydrolyzed in less than seconds [37]. This
is in contrast to the production and degradation of PIN
proteins, which takes place on much larger time scales of
several minutes. We therefore model the total amount of
PIN proteins Ptot to be constant per cell, yielding the fol-
lowing equality for the number of free PIN proteins in the
bulk Pb(n) = Ptot−Pr(n)−Pl(n). Hence, we only consider
the dynamics of PIN proteins embedded in a cell mem-
brane. Their concentration changes first of all by a basal
adsorption rate sP and a basal desorption rate dP . Addi-

1 The importance of extracellular diffusion of auxin can be
assessed by estimating the residence time of auxin in extracel-
lular space. Assuming an auxin molecule diffuses with diffu-
sion constant D = 67 μm2/s [32] in a typical cell-cell interface
of 0.5 μm. If it comes close to either of the cells the molecule
may re-enter. Taking into account that not all extracellular
auxin molecules are protonated and hence able to penetrate
the membrane, we assume the probability to enter a cell to be
of 10% [31,8]. Considering these assumptions already 97% of
all auxin molecules have re-entered any cell including the one
they were delivered from after a time duration of one millisec-
ond [33].

tionally, the net auxin flow over a cell-cell interface is mod-
eled to feed back onto the amount of PIN proteins favoring
the flow direction. This is cast in an enhanced attachment
or equally a decreased desorption rate: gP J2(n)θ(J(n)) as
proposed by canalization models [15–17,24,38–40,26]. By
imposing the Heaviside step function θ, the feedback re-
acts to positive net flow only. For the following analysis
the feedback is proportional to the square of the net auxin
flow as stated below. In the discussion we explain that any
exponent larger than one yields analogous results. Dif-
ferent feedback mechanisms proposed recently [23,41–43]
are also compared to our approach in the discussion. In-
corporating the positive feedback on auxin flow, the PIN
dynamics are given by

d

dt
Pr(n) = −dP Pr(n) + sP Pb(n)

+gP J2(n)θ(J(n))Pb(n), (2)

d

dt
Pl(n) = −dP Pl(n) + sP Pb(n)

+gP J2(n − 1)θ(−J(n − 1))Pb(n). (3)

Except for the non-linear feedback term, we assumed
throughout the model setup linear relationships as a first-
order expansion to the yet elusive detailed underlying
dynamics. We refer to the discussion for an analysis of
model modifications confirming the robustness of our as-
sumptions. In contrast to many existing canalization mod-
els [16,17,38–40,26] we account for the detailed PIN cy-
cling by endosomes similar to ref. [24], however, we discard
the explicit dynamics of a putative auxin synthesizer used
in that work.

Up to now our model involves six kinetic rates, how-
ever, rescaling the concentration of auxin a = A/Aeq,
where Aeq = sA/dA, and PIN proteins, pr,l = Pr,l/Ptot, as
well as time τ = t dP reveals that only four independent,
dimensionless parameters govern the behavior of auxin
and PIN dynamics, namely δa = dA/dP , σp = sP /dP ,
γp = gP A2

eqP
2
tot/dP , and ǫa = eAPtot/ℓdP . Quantitative

knowledge of the kinetic rates is very sparse. Half-life
measurements of auxin yield estimates for its degrada-
tion rate, dA = 2 · 10−4–2 · 10−5 1/s [44], which is how-
ever strongly affected by environmental conditions such
as light, wind, and temperature. Permeability measure-
ments [45,32] of PIN-assisted auxin anion transport are
found to be eAPtot = 1.4μm/s. For the other kinetic rates
no experimental estimates are available to the best of our
knowledge although various rates have been assumed in
simulations. This limited knowledge of the kinetic rates
underlying auxin and PIN dynamics demonstrates how
desired an intuition of their relation and role is, which
can be obtained from mathematical analysis, opening up
new approaches for experimental measurements.

3 Results

3.1 Observations from numerics

During vein formation auxin supplied from the outer epi-
dermis enters a single cell initiating the polarization of a
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Fig. 2. (Colour on-line) Spatial trajectory of polarization pulse
and fronts. Auxin (blue) and PIN concentration on the left-
(green) and right- (orange) hand side of a cell are displayed
along a strand of cells numbered by their distance in cells from
the site of initiation. (A) A short, initial supply of auxin to a
single cell yields a single polarization pulse, while (B) a con-
tinuous, high inflow of auxin from one end (left) yields a po-
larization front. (C) Continuous supply at a center cell results
in two opposite polarization fronts originating from a single
bipolar cell. Trajectories arise from the numerical integration
of our mathematical model for parameters values dA/dP = 0.2,
sP /dP = 0.2, eAPtot/ℓdP = 2, and gP A2

eqP
2
tot/dP = 8. Initial

and continuous auxin supply of A = 20Aeq.

cell strand [19]. We simulated this scenario by integrating
the microscopic equations (1)-(3) numerically for different
kinds of auxin supply, see fig. 2. Starting from a strand
of cell with evenly distributed PIN proteins and an equi-
librated amount of auxin, we shortly applied auxin by in-
creasing the initial auxin concentration in a single cell.
This triggers a polarization pulse which shortly polarizes
the PIN proteins in each cell before all cells relax back to
their initial non-polar state, fig. 2(A). Subsequent pulses
can only be excited when the cells are almost relaxed back
to their non-polar state, therefore a certain lag time is
required (data not shown). If the auxin is supplied con-

tinuously by keeping the amount of auxin in a single cell
at high level a polarization front forms. The front causes
all cells which it passed to become permanently polarized,
fig. 2(B). If a cell in the center of a strand of cells is contin-
uously supplied with auxin, two fronts arise traveling to
opposite directions along the strand, fig. 2(C). The latter
two observations resemble those from vein formation [19].

As the polarization pulse and front bear a lot of char-
acteristics in common, deriving analytic solutions for the
first gives also quantitative insight into the second. In the
following our non-linear analysis explains the formation of
a polarization pulse and front. Identifying the role of the
underlying kinetic processes by exemplarily solving the
polarization pulse, we derive quantitative results for pulse
and front properties. Observations in fig. 2(A) and (B) in-
dicate that changes in concentration of PIN proteins on
the left, Pl, facing adverse to the direction of transport, are
very small. We therefore assumed in our following analysis
dPl(n)/dt = 0, i.e., considering the stationary state value
Pl(n) = σp(1−Pr(n))/(1+σp) for a polarization traveling
to the right.

3.2 Static state of a single cell

Assuming a uniform state for a whole strand of cells, each
single cell itself has two stable and one unstable equilib-
rium state, as shown in fig. 3(A). The first stable fixed
point at

aRES = 1, (4)

pRES =
σp

1 + 2σp

,

is a resting state, where PIN proteins are evenly dis-
tributed and no net auxin flow occurs. For parameters
beyond γp ≥ 4(1 + 2σp) two further crossings of the null-
clines dA/dt = 0 and dPr/dt = 0 occur in a saddle-node
bifurcation, a pair of one unstable and one stable fixed
point at

aPOL∓ = 1, (5)

pPOL∓(aPOL∓) =
1 + 3σp ∓ (1 + σp)

√

1 − 4(1+2σp)
γp(aPOL∓)2

2(1 + 2σp)
,

respectively. At the second stable fixed point the PIN dis-
tribution is polar as Pr outnumbers Pl by at least Ptot/2,
yielding a constant net flow of auxin to the right. The rest-
ing state originates from synthesis and degradation terms
in eqs. (1)-(3), while the second pair of fixed points arises
due to the feedback. As both the resting and the polar
state are linearly stable, a uniform set of cells decays into
one of them depending on the cells initial state. To the
left of the unstable manifold embedding the unstable fixed
point, depicted as dashed line in fig. 3(A), all cells relax
to the resting state while to the right of this separatrix
all states decay to the polar fixed point. This is true for
a homogeneous set of cells, however, in a spatially inho-
mogeneous system complex scenarios such as waves and
fronts arise [46,47].
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Fig. 3. (Colour on-line) Illustration of the non-linear characteristics of auxin-induced polarization. (A) Trajectory of a polariza-
tion pulse (grey) and front (black) in the nullcline graph obtained from integrating the microscopic equations. Each single cell
has two linearly stable fixed points (solid green circle), a resting state with symmetric PIN distribution (RES) and a polar state
with constant auxin flux (POL). Their areas of attraction are separated by an unstable manifold (green dashed line) embedding
the unstable fixed point (open green circle). Parameters as in fig. 2. (B) Heuristic mapping of the numerical polarization pulse
along a strand of cells. Auxin is piled up in a cell with even distribution of PIN on both cell membranes at the front of the
pulse. Due to the slow attachment rates of PIN proteins gP , sP /dP the cell is still non-polar. Increasing the attachment rates
due to the positive feedback of auxin flow reduces the auxin amplitude. Growing cell-to-cell transport efficiencies eA increase
the auxin amplitude as more auxin reaches the peak per time step.

3.3 Dynamic transition

Due to spatial inhomogeneities passed on along a strand
of cells from a cell with auxin supply, the state of a cell
changes over time as a polarization pulse or front travels
through. The trajectory of states of a single cell in time,
fig. 3(A), maps onto the trajectory of a polarization pulse
over a strand of cells in space, see fig. 3(B), allowing for a
heuristic interpretation of the polarization dynamics. To
investigate these dynamics, we performed the continuum
limit of the microscopic equations (1), (2), see Supplemen-
tary material I for details. This gives rise to a set of partial
differential equations, which describe the change of a and
pr at one point in space over time,

∂

∂τ
a(x, t) = δa (1 − a(x, t))

−ǫa

1 + 2σp

1 + σp

ℓ∂

∂x

[(

pr(x, t) − pRES
)

a(x, t)
]

, (6)

∂

∂τ
pr(x, t) = −γp

(1 + 2σp)
2

(1 + σp)3
a2(x, t)

(

pr(x, t) − pRES
)

×
(

pr(x, t) − pPOL−(a)
) (

pr(x, t) − pPOL+(a)
)

−γp

σ2
p

(1+σp)3
(pr(x, t)−1)

{

ℓ∂

∂x
[(pr(x, t)−1) a(x, t)]

}2

.

(7)

This time evolution depends on reaction terms, including
only auxin and PIN concentration at the same specific
point in space, and gradient terms which account for the
influence of neighboring sites. The reaction terms cause
the system to relax to its stable fixed points as described
in the previous section. The gradient terms, however, drive
the system along its pulse trajectory.

The following explains the dynamic transition and the
role of reaction and gradient terms in it starting from a

cell in the non-polar resting state (RES). If the gradient
in auxin and PIN to the neighboring cell is large enough
the cell is forced out of its stable resting state to larger
values of auxin entering the domain of attraction of the
polar state (POL). If a neighboring cell has accumulated
more auxin and has a higher amount of PIN facing the
direction of the polarization pulse, pr, it is very effec-
tive in transporting auxin onwards into a cell, raising the
auxin content well above the equilibrium value. As the
now auxin-supplied cell has itself more auxin to transport
onwards, the net flux increases starting off the positive
feedback which results in PIN polarization. The then fully
polarized cell is very efficient in moving its excess auxin
onwards, finally decreasing its auxin content towards the
polar stable state. The neighboring cell that has been po-
lar and transporting onwards auxin for a bit longer has
less auxin, reversing the direction of the auxin gradient.
If this auxin gradient is large enough, it drives the cell
past its polar state into the domain of attraction of the
resting state. Hence, if the amount of auxin in the neigh-
boring cell is very low, the auxin supply breaks down and
with it the onward flux of auxin. The positive feedback is
decreasing and with it polarization towards the non-polar
resting state. Subsequent polarization pulses can only be
triggered if the polarization already saturated down to
almost resting state values, otherwise the remaining po-
larization would just transport the applied auxin onwards
before the positive feedback can build up an enhanced po-
larization of PIN proteins. The phenomenon that a system
has to relax back to its resting state before a new pulse can
be excited is denoted refractory phase in excitable media.

We find that the gradient terms in the auxin and PIN
dynamics have unequal analytic structures that lead to
their different functions. In the PIN dynamics the squared
gradient increases spatial inhomogeneities in PIN distri-
bution by augmenting pr up to saturation. In the auxin
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dynamics the signs of auxin and PIN gradients decide the
direction of change in auxin concentration. In front of an
excitation pulse the gradient induces a growth of auxin
content, while it decreases the amount of auxin at the
rear of the pulse. The magnitude of the auxin gradient
also decides between the formation of a polarization pulse
or front. If the auxin content in the neighboring cell is
only slightly smaller due to continuous or only slowly vary-
ing auxin supply a constant flux of auxin through polar
cells is established, a polarization front forms. If, however,
the auxin gradient is large and the auxin inflow decreases
drastically the feedback breaks down and the cells in the
polarization pulse relax back to their resting state. In sum-
mary the polarization of PIN distribution by auxin flow is
initially a bistable system that behaves like an excitable
medium depending on the amount and continuity of auxin
supply.

3.4 Analytical results

Identifying polarization dynamics as an excitable medium
enables us to go beyond numerical integration of the mi-
croscopic equations and analytically compute the auxin
amplitude of a polarization pulse or front. To this end, we
employed singular perturbation theory [49,50] on a polar-
ization pulse. Here we explain the outline of the calcula-
tion, a detailed derivation is provided in Supplementary
material I. The whole polarization pulse can be subdivided
into four regions as shown in fig. 2(A) and fig. 3(A). First
the front and back where the auxin concentration is nearly
constant and only the number of PIN proteins changes sig-
nificantly. Second the excited and the refractory domain
during which the efflux facilitator concentration follows
approximately the nullcline and hence only changes ac-
cording to the nullclines’ variation with the auxin con-
centration while the auxin concentration itself varies pro-
foundly. Therefore, all four regions are governed to good
approximation by just a single non-linear equation, the
one of the PIN protein dynamics or the one of auxin dy-
namics, respectively. Unfortunately, even each single con-
tinuum equation is not analytically solvable. The model
equations (6), (7) are therefore linearized around the sta-
ble nullclines yielding two sets of equations, one left to the
unstable manifold and one right to it. By this lineariza-
tion we overestimated the PIN dynamics close to the un-
stable manifold which leads to smaller auxin amplitudes
than those resulting from the integration of the micro-
scopic equations (1)-(3). An algebraic solution is obtained
by imposing a traveling wave Ansatz A(x−vt), Pr(x−vt)
and solving all four equations under the condition of dif-
ferential continuity at their intersections. The calculation
yields a closed expression for the auxin amplitude which
captures the role of the underlying kinetic parameters:

A2
max

A2
eq

=
ρ

2

(

1 +

√

√

√

√1 +
42

β2

[

1 + sin
(

φ
3

)

−
cos

(

φ
3

)

√
3

])

, (8)
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Fig. 4. Results for the auxin amplitude Amax. The auxin am-
plitude Amax varies during a polarization pulse or front with
its independent kinetic parameters (A) transport efficiency of
auxin ǫa = eAPtot/ℓdP , (B) basal attachment rate σp = sP /dP

and, (C) enhanced attachment rate γp = gP A2
eqP

2
tot/dP . Shown

are results from the numerical integration of the microscopic
equations and the analytic expression multiplied by an overall
factor of 2.3. We considered σp = sP /dP ≪ 1, such that only
less than a third of all PIN proteins occupy each membrane in
the resting state. ǫp = eAPtot/ℓdP > 1 as auxin permeability

eAPtot = 1.4 μm/s [45,32] is roughly larger than endosome cy-
cling by active transport along a cell’s cytoskeleton ℓsP [48].
We suggest γp = gP A2

eqP
2
tot/dP > 1, as protein and auxin

numbers might be very large. Finally, assuming literature val-
ues of dA [44], endosome cycling, and taking cell length of tens
of μm, we used dA/dP = 0.2 to compare our results. Each
graph shows the variation of a single parameter, while the re-
maining are kept constant at dA/dP = 0.2, eAPtot/ℓdP = 10,

gP A2
eqP

2
tot/dP = 12, and sP /dP = 0.2.

and φ = tan−1(−3
√

3β2,
√

214 − 33β4). The analytic re-

sult is compared to the numeric integration of the micro-
scopic equations (1)-(3) over a broad range of the kinetic
parameters in fig. 4. Due to the linearization of the equa-
tions, the algebraic amplitudes are too low. Fitting the
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analytic to the numeric results yields an overall factor 2.3.
This constant factor does not depend on the specific pa-
rameter range. Considering the amount of approximations
that entered the calculation, the analytic result captures
very well the dependence on the kinetic parameters over
orders of magnitudes. To obtain insight in how the magni-
tude of the kinetic parameters determines the amplitude,
we simplified eq. (8) further. Following our considerations
on the size of the kinetic parameters in fig. 4, β is smaller
than one. Hence, expanding for small β gives

A2
max ∝

2ρ

β
∝

eAPtot

ℓdP

1
gP P 2

totA
2
eq

dP

(1 + sP

dP
)(1 + 2 sP

dP
)

sP

dP

. (9)

As the amplitude arises due to auxin inflow from neigh-
boring cells, Amax increases with the rescaled transport
efficiency eAPtot/ℓdP . Auxin is accumulated in a cell until
the cell reaches its almost fully polarized state and can
efficiently transport auxin onwards, see fig. 3(B). Hence,
accumulation time and auxin amplitude Amax inversely
depend on the basal PIN cycling rate sP /dP and the
enhanced attachment rate gP P 2

totA
2
eq/dP . Synthesis and

degradation of auxin do not contribute to the amplitude
in this first-order approximation as their impact on the
transport is very small. Note that the amplitude, like all
other pulse and front characteristics, is independent of the
amount of supplied auxin, a general property of excitable
media. Applying the above simplification to the resulting
analytic expressions for the velocity of the auxin pulse, see
supplemental eqs. (S7), (S8), yields

v ∝ eAPtot. (10)

This result reveals that the pulse of front velocity is dom-
inated by membrane permeability of auxin facilitated by
PIN proteins which is just the product of transport effi-
ciency and number of PIN proteins per cell. The prefactor
in eq. (10) v/eAPtot can be estimated from comparison
with numeric integration of the microscopic equations as
shown in fig. 4 to be in the range of 6 · 10−5–6 · 10−4

depending on the remaining kinetic parameters.

4 Discussion

We have shown that some prominent aspects of auxin and
PIN dynamics can be inferred from a simple mathematical
model. Our model predicts the transition of ground meris-
tem cells from a non-polarized stable state to a polarized
stable state of constant auxin flow. This development oc-
curs by a traveling wave front triggered by a continuous
inflow of auxin from the outer epidermal layer, in accor-
dance with experimental observations [19]. Each cell is a
bistable excitable medium. Excitations from one state to
the other can be induced by supply of auxin and crucially
depend on the spatial gradients in auxin and polar PIN
concentrations between cells. The amplitude of auxin in
the wave front and the polarization of the stable states is
cast in analytical expressions concordant with numerical
integration of our microscopic equations.

The microscopic equations underlying our model for
auxin and PIN dynamics are defined such that all rele-
vant biological processes are included while a minimum
of assumptions on their actual kinetics entered. To this
end only linear synthesis, degradation and transport etc.
is considered as a first-order approximation of any kind
of kinetics. However, the model is robust against alter-
ation of the linear relationships, as is illustrated in Sup-
plementary material II. For example, extending the cell-
to-cell auxin transport to account for Michaelis-Menten
kinetics preserves the form of the nullclines and the dy-
namics of the wave. In our model only the feedback of
auxin flow on the attachment of PIN proteins enters
non-linearly. A linear growth of the enhanced attach-
ment rate with the auxin flow cannot lead to a propa-
gating front, as such a model does not exhibit two sta-
ble fixed points. Only auxin flow exponents higher than
one show these properties. However, the exact value of
the exponent does not affect the form and dynamics of
the traveling wave, again confirming the robustness of our
assumptions.

Recently, models for auxin and PIN dynamics were
developed proposing that the auxin concentration in the
neighboring cell feeds back onto an enhanced attachment
rate of PIN proteins [23,41–43] in contrast to canaliza-
tion models, where the net auxin flux governs the feed-
back. These concentration driven models exhibit a static
state of spatially ordered auxin maxima with PIN proteins
polarized towards these auxin maxima [23]. This behav-
ior arises as concentration driven feedback changes the
non-linear character of auxin and PIN dynamics. These
models generally exhibit only a single stable, resting fixed
point [51,52]. The polarization due to auxin supply ob-
served in these models [42] arises due to an evolved relax-
ation into the stable, resting state. Hence, the polarization
is only temporary and, for instance, the amount of polar-
ization and the velocity of the polarization front depend
crucially on the amount of auxin supply. This is in contrast
to our minimal canalization model, where all polarization
characteristics are only governed by the kinetic parame-
ters. The amount of auxin supply in an excitable medium
only regulates if a pulse or front is excited or not. Hence,
these qualitative differences may help to distinguish be-
tween the different models experimentally.

The role of all kinetic processes during the dynamic
rearrangement of PIN and auxin in cells becomes explicit
when examining the very front of the polarization in a mi-
croscopic scenario as illustrated in fig. 3(B). The almost
fully polarized cell at the peak of the front carries a lot of
auxin molecules that are invading the next yet non-polar
cell in the direction of polarization with a rate mainly
governed by the cell-to-cell transport efficiency eA. To suc-
cessfully transfer the accumulating auxin onwards the PIN
proteins in the yet non-polar cell have to rearrange to fa-
cilitate directed transport. However, the endosome cycling
sP , gP by which the membrane bound PIN proteins reach
the cell membrane is very slow. Hence, the attachment
rate of the efflux facilitators forms a bottleneck that piles
up more and more auxin in a cell, that is slowly increasing
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the amount of PIN proteins facing the direction of trans-
port. Heuristically, an auxin pulse forms due to a traffic
jam caused by the slow cycling of the efflux facilitators, as
given by eq. (9). As an equilibrium concentration of PIN
proteins is always embedded in each membrane ready to
transport auxin, the magnitude of the velocity of a po-
larization front or pulse is set by the cell-to-cell transport
efficiency, see eq. (10). The other kinetic parameters only
slightly modulate the velocity. The PIN attachment rates,
gP , sP , and detachment rate, dP , on the other hand, de-
termine the number of PIN proteins accumulated at the
membrane in the polar stable state, see eq. (5). The po-
larization grows with the enhanced attachment rate, the
strength of the feedback, gP . On the contrary, basal PIN
cycling sP /dP intensifies the competition between oppos-
ing membranes decreasing the amount of PIN proteins in
the direction of polarization.

The result of our analytic expressions for the PIN con-
centration in the polar state with constant auxin flux
in eq. (5) and the auxin amplitude at the very head
of the polarization front eq. (8) enable estimates of the
underlying kinetic rates by identifying and measuring
these observables in future experiments. Existing exper-
imental results by Scarpella et al. [19] permit an es-
timate of the polarization front velocity in the range
v = 10−4–10−3 μm/s, in accordance with our estimate for
the velocity v = 8 · 10−5–8 · 10−4 μm/s, resulting from the
fitted pre-factor in eq. (10) and the literature value of
auxin permeability eAPtot [45,32]. An quantitative esti-
mate of PIN polarity from the same existing data is to
best of our knowledge yet unfeasible as a reference for
the protein number is absent. This could be overcome
by new experiments, which could also aim at the auxin
kinetic rates. Unlike PIN which is readily GFP tagged,
auxin is not directly detectable and quantification of its
amount can only occur via indirect methods. Recently,
measurements of deuterated auxin improved [53], making
experiments with exogenously applied auxin conceivable.
In such setups one should, however, keep in mind that ex-
ogenous auxin mixes with endogenous, non-labelled auxin,
decreasing the observed amplitude. The position of the
auxin peak can easily be located as it should be accumu-
lated in front of those cells with the largest amount of
PIN proteins at the corresponding membrane. Measure-
ments of the amount of PIN proteins in polarized cells
via GFP tagging could not only disclose the basal endo-
some cycling rate but also the magnitude of the feedback
between auxin flow and PIN dynamics.

The occurrence of bipolar cells has stimulated pre-
vious theoretical models introducing a hypothetical new
molecule [54] or moving auxin sources [38]. Our model,
however, readily predicts the occurrence of bipolar cells
along a one-dimensional strand of cells at the site of con-
tinuous auxin inflow. These cells show a high concen-
tration of PIN proteins on either membrane, a balanced
outcome of the competition for PIN between both mem-
branes. This state is not a statically stable but dynami-
cally driven by the supply of auxin. Transferring this ob-
servation to the two-dimensional layer of ground meris-

tem cells during vein initiation may explain the bipolar
cells observed experimentally [19,27–29]. In two dimen-
sions several membranes can compete, yielding also triple
polar cells or theoretically higher orders of polarity. How-
ever, in biological cells not all cell membranes may have
the same number of PIN proteins to enter the competi-
tion. Those with fewer initial PIN proteins will become
the site of PIN drain, decreasing the number of successful
polarization fronts. Experiments indicate that mechanical
cues might favor certain membranes [55], paving the way
of a polarization front and hence the position of veins and
vein loops.

In summary we analyzed a canalization model to ex-
plain how auxin and PIN dynamics polarize the distribu-
tion of PIN proteins during early vein initiation in the
ground meristem. Each cell is found to be bistable consid-
ering their PIN distribution in the membrane. Polarization
occurs in a traveling front as auxin is supplied to a single
cell mimicking the auxin inflow from the outer epider-
mal cell layer. The driver in this transition is the spatial
gradient of auxin and polar PIN concentration between
cells. The key idea in this polarization is the positive feed-
back between hormone auxin and its own efflux facilitator
PIN. An idea that might be inspiring in other developmen-
tal processes in animals where tissue is polarized as, for
example, in planar cell polarity [56]. As the polarization
front can travel in opposite directions from its initiation
site, a bipolar cell, the up to now puzzling occurrence of
closed vein loops can be resolved. Furthermore, our non-
linear analysis enables the calculation of exact analytical
expression for the polarization front. Therefore, our new
quantitative predictions for the PIN polarization driven
by auxin flow establishes a basis to determine the kinetic
parameters underlying the transport of auxin and may
therewith have far-reaching impacts on the understand-
ing of the developmental processes and their differences in
plant species, to perceive the fundamental patterns of leaf
veins or phyllotaxis and learn how environmental condi-
tions alter these.
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I. AUXIN AMPLITUDE COMPUTATION

Starting from the microscopic definition of a model for the polarization of PIN distributions

by auxin flow, see Eq. (1), (2) and (3), an exact analytical expression for the auxin amplitude and

the velocity of the polarization pulse is derived. To this end a continuum limit is performed and

singular perturbation theory is employed as described in the following.

Initially, polarization is defined by three equations governing the dynamics of auxin concen-

tration A and the amount of PIN efflux facilitators on the membrane on the right Pr or on the

left Pl hand side of the cell. Assuming the symmetry of the system is broken such that polariza-

tion evolves to the right, the concentration of efflux facilitators on the left hand side membrane of

every cell does not change significantly with time if sP/(dP + 2sP ) � 1, we therefore assume

dPl(n)/dt = 0. As flow proceeds to the right J(n) > 0 ∀n, the amount of PIN proteins on the left

hand side membrane amounts in its stationary state to Pl(n) = sP (1− Pr(n))/(dP + sP ). Substi-

tuting this result in the remaining dynamic equations the system is described by two components

only, A(n) and Pr(n). We derive continuum equations by setting n → x, n + 1 → x + `, and

n − 1 → x − `. When the wavelength as the length scale on which the pulse evolves is consider-

ably larger than the cell length `, a time scale separation occurs which makes higher order terms

negligible small. As observed in the simulations shown in Fig. 2 the wavelength of a single pulse

is of the order of tens of cells justifying a Taylor expansion in x. To describe the characteristics

observed in the microscopic equations with continuous equations only zeroth order terms and a

single second order term in the PIN dynamics are required,

∂

∂t
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Aeq
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In these expressions the degree of nonlinearity is still too high to obtain analytical results by

use of singular perturbation theory. Therefore, the continuum equations are further simpli-

fied by approximating them right and left of the nullcline embedding the unstable fixed point,

Pr(x) = dP +3sP

2(dP +2sP )
− dP +sP

2(dP +2sP )

√
1− 4(dP +2sP )

gPPtotA2(x)
, which to good approximation resembles the sep-

aratrix between the areas of attraction of the stable fixed points.

Left of the nullcline the reaction terms of the continuum equations, those terms without spatial

or temporal derivatives, are expanded around the stable nullcline embedding the stable resting state

(A/Aeq = 1, Pr/Ptot = sP/(dP + 2sP )). The spatial derivative terms are simplified by discarding

the spatial derivative of auxin whose factor Pr(x)/Ptot − sP/(dP + 2sP ) turns the whole term

negligible small close to the stable nullcline, resulting in,
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Right of the nullcline embedding the unstable fixed point the reaction term of the efflux facil-

itator dynamics is expanded around the polar fixed point (A/Aeq = 1, Pr/Ptot = dP +3sP

2(dP +2sP )
+

dP +sP

2(dP +2sP )

√
1− 4(dP +2sP )

gPA2
eqP

2
tot

). Here, the spatial derivative terms contributing to the PIN protein dy-
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namics become negligible small and are therefore discarded, yielding,
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Based on these sets of equations the amplitude and the velocity of a polarization pulse are calcu-

lated employing singular perturbation theory [1, 2]. The singular perturbation approach becomes

applicable to a two component system performing a pulse if the pulse can be separated in different

regions which comply either of the following restrictions. Either to good approximation one com-

ponent is constant while the other changes rapidly. Or if both components change simultaneously

one of the components should follow a nullcline. Then the two coupled nonlinear equations decou-

ple in each region and only one differential equation remains to be solved. Assuming a traveling

wave ansatz z = x− vt, where v defines the velocity of the wave, the partial differential equations

simplify to ordinary differential equations. These differential equations remain to be solved under

the condition of continuity and differential continuity at the nullcline embedding the unstable fixed

point which separates the two cases Eqs. (S3, S4) and Eqs. (S5, S6).

The trajectory of an auxin pulse can be subdivided into four regions, first a wave front and

back, where the auxin concentration is approximately constant Amax, min, while the PIN protein

concentration changes rapidly and second an excited and a refractory region during which the PIN

concentration follows the stable nullclines. Several boundary conditions arise from the requirement

of continuity and differential continuity. Considering the efflux facilitator dynamics continuity

requires that PIN concentrations during pulse front and back governed by Eqs. (S4) and (S6) merge

into the nullclines defining refractory and excited domain Pr,front(z → ∞) = Pr,refrac, Pr,front(z →

−∞) = Pr,excite and Pr,back(z → −∞) = Pr,refrac, Pr,back(z → ∞) = Pr,excite. As the separating

nullcline is crossed during wave front and back additionally continuity and differential continuity

is compulsory for efflux facilitators at the position of the nullcline embedding the unstable fixed

point zsep. The auxin concentration evolving during excited Eq. (S5) and refractory region Eq. (S3)

has to reach the constant auxin concentration of pulse front and back Amax, Amin at distinct points
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in evolution z = zfront and zback, resulting in the boundary conditions Arefrac(zfront) = Amax =

Aexcite(zfront), Arefrac(zback) = Amin = Aexcite(zback), dArefrac(zfront)/dz = dAexcite(zfront)/dz, and

dArefrac(zback)/dz = dAexcite(zback)/dz. Two of those boundary conditions yield equations that

solve for the auxin amplitude Amax and the pulse velocity v. First the condition of differential

continuity of the PIN concentration at the separatrix ∂Pr(zsep)/∂z results in,

v =
4`dP

sP

dP

1 + sP

dP

√√√√√√√√
A8

max
ρ4

(
1 + ρ

A2
max

)2
(

1 +
√

1− ρ
A2

max

)4

1 + 4A4
max
ρ2

(
1 + ρ

A2
max

)(
1 +

√
1− ρ

A2
max

)2 , (S7)

where we abbreviated ρ = 4(dP + 2sP )/gPP
2
tot. Second differential continuity of auxin left and

right of a wave front or back Arefrac(zfront) = Amax = Aexcite(zfront) yields,

v =
eAPtot

4

(
1 +

√
1− ρ

A2
max

)
. (S8)

These two equations together result in a quartic equation for the amplitude of the auxin pulse,

evaluated to the expression given in eq. (8). Reentering this result into one of the defining equations

above yields an analytic result for the velocity of an auxin pulse.

II. COMPARISON TO ALTERNATIVE MICROSCOPIC TRANSPORT MODELS

When defining our microscopic equations Eqs. (1 - 3) we included all contributing processes

but considered a minimum of assumptions on the kinetics. In this spirit all processes are modeled

by linear relations as the first order term of any kind of underlying kinetics. The only exception

is the enhanced attachment of PIN proteins, which is the point where non-linearity enters the

microscopic model triggering the non-linear effect of a traveling pulse or front. Including further

non-linearities renders the microscopic models intractable for analytical calculations. However, the

analysis of our minimal model has revealed the key characteristics for polarization to be two stable

fixed points accompanied by an unstable manifold. Excitations beyond this unstable manifold

then lead to the development of a wave pulse or the relaxation to the polar stable fixed point.

With this knowledge we can assess more evolved microscopic models by comparing their non-

linear characteristics such as the nullclines to the minimal model. As is shown in the following,



5

A/
A e

q

space

minimal model
M-M kinetics for auxin
feedback - J3

FIG. S1: Comparing the polarization pulse for different extended models to our minimal model yields no
difference in their characteristics confirming the robustness of our linear approximations. Parameters values
as follows. Minimal model dA/dP = 0.2, sP /dP = 0.2, eAPtot/`dP = 10, and gPA2

eqP
2
tot/dP = 12.

Michaelis-Menten kinetics for active auxin transport dA/dP = 0.2, sP /dP = 0.2, eAPtot/`dPAeq = 8,
gPP 2

tot/dP = 70, and kA/Aeq = 1.6. Feedback to the power of three dA/dP = 0.2, sP /dP = 0.2,
eAPtot/`dPAeq = 10, and gPP 3

totA
3
eq/dP = 18.

exemplarily changing linear terms of the minimal model into non-linear terms results only in slight

changes of the characteristics confirming the robustness of a first order assumption in the minimal

model. If not explicitly stated otherwise we assumed dPl(n)/dt = 0 to calculate the fixed points.

A. Michaelis-Menten kinetics for active auxin transport

One may assume that a Michaelis-Menten mechanism describes the active transport of a sub-

strate auxin by an enzyme presented by the PIN proteins [3, 4]. Then, in the definition of the

net auxin flow the number of transported auxin molecules is represented by a Hill function with

Michaelis-Menten constant kA. For reasons of completeness we state the full set of microscopic

equations:

d

dt
A(n) = sA − dAA(n)− eA

`
[J(n)− J(n− 1)] , (S9)

d

dt
Pr(n) = −dPPr(n) + sPPb(n) + gPJ

2(n)θ(J(n))Pb(n), (S10)

d

dt
Pl(n) = −dPPl(n) + sPPb(n) + gPJ

2(n− 1)θ(−J(n− 1))Pb(n), (S11)

J(n) =
A(n)

A(n) + kA
Pr(n)− A(n+ 1)

A(n+ 1) + kA
Pl(n+ 1). (S12)
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These equations yield in accordance with the minimal model three fixed points, one resting state

at (A/Aeq = 1, Pr/Ptot = sP/(dP + 2sP )) and a pair of stable and unstable constant current fixed

points at (A/Aeq = 1, Pr/Ptot = dP +3sP

2(dP +2sP )
∓ dP +sP

2(dP +2sP )

√
1− (1 + kA)2 4(dP +2sP )

gPP
2
tot

). The model

displays very similar nullclines and the same dynamics as the minimal model as exemplified in

Fig. S1. If the new parameter kA lies outside its range kA ≤ −1 −
√

gPP
2
tot

4(dP +2sP )
and kA ≥ −1 +√

gPP
2
tot

4(dP +2sP )
only a single stable fixed point occurs and no polarization can be observed.

B. Feedback - power of the current

In the minimal model we take the feedback of auxin flow on the enhanced attachment of PIN

proteins to enter with a power of two. In general one could assume any kind of power,

d

dt
A(n) = sA − dAA(n)− eA

`
[J(n)− J(n− 1)] , (S13)

d

dt
Pr(n) = −dPPr(n) + sPPb(n) + gPJ

k(n)θ(J(n))Pb(n), (S14)

d

dt
Pl(n) = −dPPl(n) + sPPb(n) + gPJ

k(n− 1)θ(−J(n− 1))Pb(n), (S15)

J(n) = A(n)Pr(n)− A(n+ 1)Pl(n+ 1). (S16)

Considering only integer powers for simplicity, we find the following. For k = 1 the above

equations display the resting fixed point at (A/Aeq = 1, Pr/Ptot = Pl/Ptot = sP/(dP + 2sP )) and

a polar fixed point at (A/Aeq = 1, Pl/Ptot = sP/gPAeqPtot, Pr/Ptot = 1 − (sP + dP )/gPAeqPtot).

The resting state is the only fixed point and stable for gPAeqPtot < dP + 2sP , otherwise the polar

fixed point is stable and the resting state turns unstable. No excited polarization can occur in either

case. However, if k > 1 the equations display a set of stable and unstable fixed points in addition

to the resting stable fixed point. For any k > 1 one recovers the dynamics observed for k = 2 in

the minimal model as exemplified in Fig. S1 for the cases k = 3. This observation is in accordance

with results of Ref. [5], which stated vein patterns for any feedback function obeying to first order

a higher power than k = 1. For k = 2 we observed that the pair of a stable and an unstable polar

fixed point occurs only for gPA2
eqP

2
tot/dP ≥ 4(1+2sP/dP ), similar rules apply for k = 3 or higher.
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III. MODEL PARAMETERS

Our model depends on four dimensionless parameters δa = dA/dP , σp = sP/dP ,

γp = gPA
2
eqP

2
tot/dP , and εa = eAPtot/`dP . As quantitative knowledge is very sparse, i.e.,

only dA = 2 · 10−4 − 2 · 10−51/s and eAPtot = 1.4µm/s are experimentally verified, their

values have been varied over large ranges within conceptional limits, see table below. As only

less than a third of all PIN protein can occupy each membrane in the resting state given by

Pr,l/Ptot = σp/(1 + 2σp), σp is limited to values considerably smaller than one. Furthermore, it

is reasonable to assume that eAPtot/`dP > 1 as auxin permeability eAPtot = 1.4µm/s [6, 7] is

roughly larger than endosome cycling by active transport along a cell’s cytoskeleton `sP [8]. In

addition, we suggest gPA2
eqP

2
tot/dP > 1 as protein and auxin numbers might be very large. Finally,

assuming literature values of dA [9], endosome cycling, and taking cell length of tens of µm, we

took dA/dP < 1. The parameter assumed in our simulation presented in Fig. 5 are summarized in

the following.

Parameter δa = dA/dP σp = sP/dP γp = gPA
2
eqP

2
tot/dP εa = eAPtot/`dP

Values 0.1-1 0.05 -1 1-10 1- 100
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