Flows drive self-organization:
Long-range fluid flows are crucial for the functioning of many organisms, as they provide forcing for migration and development and spread resources and signals. How flows can span vastly different scales is unclear. Here, we develop a minimal, two-component model, coupling the mechanics of a cell’s cortex to a contraction-triggering chemical. The chemical itself is spread with the fluid flows that arise due to the cortex contractions. Through theoretical and numerical analysis, we find that the oscillatory component of the flows can give rise to robust scaling of contraction waves with system size—much beyond predicted length scales. This mechanism is likely to work in a broad class of systems.
Oscillatory fluid flow drives scaling of contraction wave with system size.
Jean-Daniel Julien & Karen Alim,
Proc. Natl. Acad. Sci. U.S.A., 115, 10612–10617 (2018). (PDF) (Press German) (Press English)